# -*- coding: utf-8 -*-
"""
==============================================================================
Points class (:mod:`sknano.core.math.points`)
==============================================================================
.. currentmodule:: sknano.core.math.points
"""
from __future__ import absolute_import, division, print_function
from __future__ import unicode_literals
__docformat__ = 'restructuredtext en'
from operator import attrgetter
import numpy as np
from sknano.core import UserList, TabulateMixin, minmax
from .transforms import transformation_matrix
# from sknano.core.geometric_regions import Cuboid # , Rectangle
from .point import Point
__all__ = ['Points']
operand_shape_error_msg = \
"operands could not be broadcast together with shapes {}, {}"
[docs]class Points(TabulateMixin, UserList):
"""Container class for collection of `Point` objects.
Parameters
----------
points : {None, sequence, `Points`}, optional
if not `None`, then a list of `Point` instance objects or an
existing `Points` instance object.
"""
def __init__(self, points=None):
super().__init__(initlist=points)
self.fmtstr = "{points!r}"
def _tabular_data(self):
begin = len('Point(')
fmt = super()._tabular_data_format_string
values = list(zip(['P{}'.format(i+1) for i in range(len(self))],
[fmt(pt, begin, end=-1) for pt in self]))
return values,
@property
def __item_class__(self):
return Point
def sort(self, key=attrgetter('x', 'y', 'z'), reverse=False):
super().sort(key=key, reverse=reverse)
def __cast(self, other):
return other.data if isinstance(other, UserList) else other
def _is_valid_operand(self, other):
return isinstance(other, (list, np.ndarray, self.__class__,
self.__item_class__))
def _is_compatible_shape(self, other):
other = np.asarray(self.__cast(other))
return np.asarray(self.data).shape[-1] == len(other) if \
other.ndim == 1 else np.asarray(self.data).shape == other.shape
def _check_operands(self, other):
if not self._is_compatible_shape(other):
self_shape = np.asarray(self.data).shape
other_shape = np.asarray(self.__cast(other)).shape
raise ValueError(operand_shape_error_msg.format(self_shape,
other_shape))
def __add__(self, other):
if not ((self._is_valid_operand(other) and
self._is_compatible_shape(other)) or np.isscalar(other)):
return NotImplemented
if np.isscalar(other) or isinstance(other, self.__item_class__):
data = [pt.__add__(other) for pt in self]
else:
other = np.asarray(self.__cast(other))
if other.ndim == 1:
return self.__add__(self.__item_class__(other))
else:
data = [pt.__add__(other_pt) for pt, other_pt in
zip(self.data, other)]
return self.__class__(data)
def __radd__(self, other):
if not ((self._is_valid_operand(other) and
self._is_compatible_shape(other)) or np.isscalar(other)):
return NotImplemented
return self.__add__(other)
def __iadd__(self, other):
if not ((self._is_valid_operand(other) and
self._is_compatible_shape(other)) or np.isscalar(other)):
return NotImplemented
[self.__setitem__(i, pt.__iadd__(other)) for i, pt in
enumerate(self)]
return self
def __sub__(self, other):
if not ((self._is_valid_operand(other) and
self._is_compatible_shape(other)) or np.isscalar(other)):
return NotImplemented
if np.isscalar(other) or isinstance(other, self.__item_class__):
data = [pt.__sub__(other) for pt in self]
else:
other = np.asarray(self.__cast(other))
if other.ndim == 1:
return self.__sub__(self.__item_class__(other))
else:
data = [pt.__sub__(other_pt) for pt, other_pt in
zip(self.data, other)]
return self.__class__(data)
def __rsub__(self, other):
if not ((self._is_valid_operand(other) and
self._is_compatible_shape(other)) or np.isscalar(other)):
return NotImplemented
return self.__sub__(other)
def __isub__(self, other):
if not ((self._is_valid_operand(other) and
self._is_compatible_shape(other)) or np.isscalar(other)):
return NotImplemented
[self.__setitem__(i, pt.__isub__(other)) for i, pt in
enumerate(self)]
return self
@property
def A(self):
"""Return array of vectors."""
return self.asarray()
@property
def T(self):
"""Return transpose of :class:`Points` as an \
:class:`~numpy:numpy.ndarray`."""
return self.asarray().T
@property
def M(self):
"""Return :class:`Points` as a :class:`~numpy:numpy.matrix`."""
return self.asmatrix()
def asarray(self):
"""Return :class:`Points` as an :class:`~numpy:numpy.ndarray`."""
return np.asarray(self.tolist())
def asmatrix(self):
"""Return :class:`Points` as a :class:`~numpy:numpy.matrix`."""
return np.asmatrix(self.tolist())
@property
def x(self):
"""Return :math:`x` coordinates of `Point` objects as array."""
return np.asarray([point.x for point in self])
@x.setter
def x(self, values):
self._check_operands(values)
[setattr(point, 'x', value) for point, value in zip(self, values)]
@property
def y(self):
"""Return :math:`y` coordinates of `Point` objects as array."""
return np.asarray([point.y for point in self])
@y.setter
def y(self, values):
self._check_operands(values)
[setattr(point, 'y', value) for point, value in zip(self, values)]
@property
def z(self):
"""Return :math:`z` coordinates of `Point` objects as array."""
return np.asarray([point.z for point in self])
@z.setter
def z(self, values):
self._check_operands(values)
[setattr(point, 'z', value) for point, value in zip(self, values)]
@property
def minmax(self):
"""Minimum/maximum x, y, z components.
Returns
-------
:class:`~python:tuple`
"""
return tuple(zip(minmax(self.x), minmax(self.y), minmax(self.z)))
def filter(self, condition, invert=False):
"""Filter `Points` by `condition`.
Parameters
----------
condition : array_like, bool
Boolean index array having same shape as the initial dimensions
of the list of `Points` being indexed.
invert : bool, optional
If `True`, the boolean array `condition` is inverted element-wise.
Returns
-------
filtered_points : `Points`
If `invert` is `False`, return the elements where `condition`
is `True`.
If `invert` is `True`, return the elements where `~condition`
(i.e., numpy.invert(condition)) is `True`.
"""
if invert:
condition = ~condition
return self.__class__(points=np.asarray(self)[condition].tolist())
def rezero(self, epsilon=1.0e-10):
"""Set really really small coordinates to zero.
Set all coordinates with absolute value less than
epsilon to zero.
Parameters
----------
epsilon : float
smallest allowed absolute value of any :math:`x,y,z` component.
"""
[point.rezero(epsilon=epsilon) for point in self]
def rotate(self, angle=None, axis=None, anchor_point=None,
rot_point=None, from_vector=None, to_vector=None,
degrees=False, transform_matrix=None, verbose=False, **kwargs):
"""Rotate `Point`\ s coordinates.
Parameters
----------
angle : float
axis : :class:`~sknano.core.math.Vector`, optional
anchor_point : :class:`~sknano.core.math.Point`, optional
rot_point : :class:`~sknano.core.math.Point`, optional
from_vector, to_vector : :class:`~sknano.core.math.Vector`, optional
degrees : bool, optional
transform_matrix : :class:`~numpy:numpy.ndarray`
"""
if transform_matrix is None:
transform_matrix = \
transformation_matrix(angle=angle, axis=axis,
anchor_point=anchor_point,
rot_point=rot_point,
from_vector=from_vector,
to_vector=to_vector, degrees=degrees,
verbose=verbose, **kwargs)
[point.rotate(transform_matrix=transform_matrix) for point in self]
def translate(self, t):
"""Translate `Point`\ s by :class:`Vector` `t`.
Parameters
----------
v : :class:`Vector`
"""
[point.translate(t) for point in self]
def tolist(self):
"""Return `Points` as :class:`~python:list`"""
# return np.asarray([pt.tolist() for pt in self]).tolist()
return [pt.tolist() for pt in self]
def todict(self):
"""Return :class:`~python:dict` of constructor parameters."""
return dict(points=self.tolist())