# -*- coding: utf-8 -*-
"""
===============================================================================
SWNT structure generator (:mod:`sknano.generators.swnt_generator`)
===============================================================================
.. currentmodule:: sknano.generators.swnt_generator
.. todo::
Add methods to perform fractional translation and cartesian translation
before structure generation.
.. todo::
Handle different units in output coordinates.
"""
from __future__ import absolute_import, division, print_function, \
unicode_literals
__docformat__ = 'restructuredtext en'
import numpy as np
from sknano.core import pluralize
from sknano.core.math import Point
from sknano.core.structures import SWNT
from sknano.core.geometric_regions import Cuboid
from .base import NanoStructureGenerator, GeneratorMixin
from .nanotube_bundle_generator import NanotubeBundleGeneratorBase
__all__ = ['SWNTGeneratorBase', 'SWNTGenerator']
[docs]class SWNTGeneratorBase(GeneratorMixin, NanoStructureGenerator):
"""Base :class:`SWNT` generator class."""
pass
[docs]class SWNTGenerator(NanotubeBundleGeneratorBase, SWNTGeneratorBase, SWNT):
"""Class for generating :class:`SWNT` structures.
Parameters
----------
*Ch : {:class:`python:tuple` or :class:`python:int`\ s}
Either a 2-tuple of integers (i.e., *Ch = [(n, m)]) or
2 integers (i.e., *Ch = [n, m]) specifying the chiral indices
of the nanotube chiral vector
:math:`\\mathbf{C}_h = n\\mathbf{a}_1 + m\\mathbf{a}_2 = (n, m)`.
nx, ny, nz : int, optional
Number of repeat unit cells in the :math:`x, y, z` dimensions.
basis : {:class:`python:list`}, optional
List of :class:`python:str`\ s of element symbols or atomic number
of the two atom basis (default: ['C', 'C'])
.. versionadded:: 0.3.10
element1, element2 : {str, int}, optional
Element symbol or atomic number of basis
:class:`~sknano.core.Atom` 1 and 2
.. deprecated:: 0.3.10
Use `basis` instead
bond : float, optional
:math:`\\mathrm{a}_{\\mathrm{CC}} =` distance between
nearest neighbor atoms. Must be in units of **Angstroms**.
Lz : float, optional
Length of nanotube in units of **Angstroms**.
Overrides the `nz` value.
.. versionadded:: 0.2.5
.. versionchanged:: 0.4.0
Changed units from nanometers to **Angstroms**
tube_length : float, optional
Length of nanotube in units of **Angstroms**.
Overrides the `nz` value.
.. deprecated:: 0.2.5
Use `Lz` instead
fix_Lz : bool, optional
Generate the nanotube with length as close to the specified
:math:`L_z` as possible. If `True`, then
non integer :math:`n_z` cells are permitted.
.. versionadded:: 0.2.6
vdw_radius : float, optional
van der Waals radius of nanotube atoms
.. versionadded:: 0.2.5
bundle_packing : {'hcp', 'ccp'}, optional
Packing arrangement of nanotubes bundles.
If `bundle_packing` is `None`, then it will be determined by the
`bundle_geometry` parameter if `bundle_geometry` is not `None`.
If both `bundle_packing` and `bundle_geometry` are `None`, then
`bundle_packing` defaults to `hcp`.
.. versionadded:: 0.2.5
bundle_geometry : {'triangle', 'hexagon', 'square', 'rectangle'}, optional
Force a specific geometry on the nanotube bundle boundaries.
.. versionadded:: 0.2.5
autogen : bool, optional
if `True`, automatically generate structure data.
verbose : bool, optional
if `True`, show verbose output
Examples
--------
Using the `SWNTGenerator` class, you can generate structure
data for single-walled nanotubes (SWNTs) or nanotube *bundles* with
either cubic close packed (ccp) or hexagonal close packed (hcp)
arrangement of nanotubes. The bundle packing arrangement is set using the
`bundle_packing` parameter.
You can also enforce a specific
`bundle geometry` which will try and build the nanotube bundle such
that it "fits inside" the boundaries of a specified geometric shape.
This allows you to generate **hcp** bundles that are trianglar,
hexagonal, or rectangular in shape, as some of the examples below
illustrate.
First, load the :class:`~sknano.generators.SWNTGenerator` class.
>>> from sknano.generators import SWNTGenerator
Now let's generate a :math:`\\mathbf{C}_{\\mathrm{h}} = (10, 5)`
:class:`SWNT` unit cell.
>>> swnt = SWNTGenerator((10, 5))
>>> swnt.save(fname='10,5_unit_cell.xyz')
>>> # note that there are two other alternative, but equivalent
>>> # means of passing arguments to SWNTGenerator constructor:
>>> # SWNTGenerator(10, 5) and SWNTGenerator(n=10, m=5)
Here's a nice ray traced rendering of the generated
:math:`(10, 5)` :class:`SWNT` unit cell.
.. image:: /images/10,5_unit_cell-01.png
Next, let's generate an hcp bundle of
:math:`C_{\\mathrm{h}} = (10, 5)` SWCNTs and cell count
:math:`n_x=10, n_y=3, n_z=5`.
>>> SWCNTbundle = SWNTGenerator(n=10, m=5, nx=10, ny=3, nz=5)
>>> SWCNTbundle.save()
The rendered structure looks like:
.. image:: /images/1005_hcp_10cellsx3cellsx5cells-01.png
Now let's generate a nice hexagon bundle, 3 tubes wide, with
:math:`C_{\\mathrm{h}} = (6, 5)`.
>>> SWCNTbundle = SWNTGenerator(n=6, m=5, nz=5, bundle_geometry='hexagon')
>>> SWCNTbundle.save()
which looks like:
.. image:: /images/0605_hcp_7tube_hexagon-01.png
Remember, all of the :meth:`~SWNTGenerator.save`
methods allow you to rotate the structure data before saving:
>>> SWCNTbundle.save(fname='0605_hcp_7tube_hexagon_rot-30deg.xyz',
... rot_axis='z', rotation_angle=30)
.. image:: /images/0605_hcp_7tube_hexagon_rot-30deg-01.png
Now, just because we can, let's make a big ass hexagon bundle with
:math:`C_{\\mathrm{h}} = (10, 0)`.
>>> big_hexagonal_bundle = SWNTGenerator(10, 0, nx=25, ny=25, nz=1,
... bundle_geometry='hexagon')
>>> big_hexagonal_bundle.save()
Take a look at the 469 :math:`(10, 0)` unit cells in this big ass bundle!
.. image:: /images/1000_hcp_469tube_hexagon-01.png
Lastly, here's a look at a bundle generated with cubic close packed
bundle arrangement:
>>> SWCNTbundle = SWNTGenerator(10, 10, nx=3, ny=3, nz=5,
... bundle_packing='ccp')
>>> SWCNTbundle.save()
The rendered `ccp` structure looks like:
.. image:: /images/1010_ccp_3cellsx3cellsx5cells-01.png
"""
[docs] def finalize(self):
"""Finalize structure data by clipping region bounds if \
:attr:`~SWNT.fix_Lz` is `True`."""
if self.L0 is not None and self.fix_Lz:
Lz_cutoff = self.L0 + self.bond
region_bounds = Cuboid(pmin=Point([-np.inf, -np.inf, 0]),
pmax=Point([np.inf, np.inf, Lz_cutoff]))
self.atoms.clip_bounds(region_bounds)
super().finalize()
@classmethod
[docs] def generate_fname(cls, n=None, m=None, nx=None, ny=None, nz=None,
fix_Lz=False, Ntubes=None, bundle_geometry=None,
bundle_packing=None, **kwargs):
"""Generate filename string."""
fname = '{}{}'.format('{}'.format(n).zfill(2), '{}'.format(m).zfill(2))
if nx == ny == 1 and bundle_geometry is None:
nz_fmtstr = '{:.2f}' if fix_Lz else '{:.0f}'
nz = ''.join((nz_fmtstr.format(nz), pluralize('cell', nz)))
return '_'.join((fname, nz))
packing = '{}cp'.format(bundle_packing[0])
Ntubes = '{}tube'.format(Ntubes)
nx = ''.join(('{}'.format(nx), pluralize('cell', nx)))
ny = ''.join(('{}'.format(ny), pluralize('cell', ny)))
nz_fmtstr = '{:.2f}' if fix_Lz else '{:.0f}'
nz = ''.join((nz_fmtstr.format(nz), pluralize('cell', nz)))
cells = 'x'.join((nx, ny, nz))
fname = '_'.join((fname, cells, packing))
if bundle_geometry is not None:
fname = '_'.join((fname, Ntubes, bundle_geometry))
return fname
[docs] def save(self, fname=None, outpath=None, structure_format=None,
center_centroid=True, **kwargs):
"""Save structure data.
See :meth:`~sknano.generators.GeneratorBase.save` method
for documentation.
"""
if fname is None:
fname = self.generate_fname(n=self.n, m=self.m,
nx=self.nx, ny=self.ny, nz=self.nz,
fix_Lz=self.fix_Lz,
Ntubes=self.Ntubes,
bundle_geometry=self.bundle_geometry,
bundle_packing=self.bundle_packing)
super().save(fname=fname, outpath=outpath,
structure_format=structure_format,
center_centroid=center_centroid, **kwargs)