POAV¶
-
class
sknano.core.atoms.POAV(atom)[source] [edit on github][source]¶ Bases:
sknano.core.meta.BaseClassBase class for POAV analysis.
Parameters: atom ( Atom) –Atominstance.Attributes
AMagnitude of \(\mathbf{v}_{\pi}\). HAltitude of tetrahedron. R1Bond1Vectorlength.R2Bond2Vectorlength.R3Bond3Vectorlength.T\(\frac{1}{6}\) the volume of the tetrahedron defined by VectorsV1,V2, andV3.V1\(\mathbf{v}_1\) unit VectorV2\(\mathbf{v}_2\) unit VectorV3\(\mathbf{v}_3\) unit VectorVpi\(\mathbf{v}_{\pi}\) unit VectorVv1v2v3Volume of the parallelepiped defined by Vectorsv1,v2, andv3.fmtstrFormat string. misalignment_anglesList of misalignment \(\phi_{i}\) angles. pyramidalization_anglesList of pyramidalization \(\theta_{P}\) angles. reciprocal_v1Reciprocal Vector\(\mathbf{v}_1^{*}\).reciprocal_v2Reciprocal Vector\(\mathbf{v}_2^{*}\).reciprocal_v3Reciprocal Vector\(\mathbf{v}_3^{*}\).sigma_pi_anglesList of \(\theta_{\sigma-\pi}\) angles. t\(\frac{1}{6}\) the volume of the tetrahedron defined by Vectorsv1,v2, andv3.v1Vector\(\mathbf{v}_1\) directed along the \(\sigma\)-orbital to the nearest-neighborAtominBond1.v2Vector\(\mathbf{v}_2\) directed along the \(\sigma\)-orbital to the nearest-neighborAtominBond2.v3Vector\(\mathbf{v}_3\) directed along the \(\sigma\)-orbital to the nearest-neighborAtominBond3.vpiGeneral \(\pi\)-orbital axis vector (\(\mathbf{v}_{\pi}\)) formed by the terminii of VectorsVectorsv1,v2, andv3.Methods
POAVdict([rad2deg])Return dictionary of POAVclass attributes.todict()Return dictof constructor parameters.Attributes Summary
AMagnitude of \(\mathbf{v}_{\pi}\). HAltitude of tetrahedron. R1Bond1Vectorlength.R2Bond2Vectorlength.R3Bond3Vectorlength.T\(\frac{1}{6}\) the volume of the tetrahedron defined by VectorsV1,V2, andV3.V1\(\mathbf{v}_1\) unit VectorV2\(\mathbf{v}_2\) unit VectorV3\(\mathbf{v}_3\) unit VectorVpi\(\mathbf{v}_{\pi}\) unit VectorVv1v2v3Volume of the parallelepiped defined by Vectorsv1,v2, andv3.misalignment_anglesList of misalignment \(\phi_{i}\) angles. pyramidalization_anglesList of pyramidalization \(\theta_{P}\) angles. reciprocal_v1Reciprocal Vector\(\mathbf{v}_1^{*}\).reciprocal_v2Reciprocal Vector\(\mathbf{v}_2^{*}\).reciprocal_v3Reciprocal Vector\(\mathbf{v}_3^{*}\).sigma_pi_anglesList of \(\theta_{\sigma-\pi}\) angles. t\(\frac{1}{6}\) the volume of the tetrahedron defined by Vectorsv1,v2, andv3.v1Vector\(\mathbf{v}_1\) directed along the \(\sigma\)-orbital to the nearest-neighborAtominBond1.v2Vector\(\mathbf{v}_2\) directed along the \(\sigma\)-orbital to the nearest-neighborAtominBond2.v3Vector\(\mathbf{v}_3\) directed along the \(\sigma\)-orbital to the nearest-neighborAtominBond3.vpiGeneral \(\pi\)-orbital axis vector (\(\mathbf{v}_{\pi}\)) formed by the terminii of VectorsVectorsv1,v2, andv3.Methods Summary
POAVdict([rad2deg])Return dictionary of POAVclass attributes.todict()Return dictof constructor parameters.Attributes Documentation
-
A¶ Magnitude of \(\mathbf{v}_{\pi}\).
-
H¶ Altitude of tetrahedron.
-
T¶ \(\frac{1}{6}\) the volume of the tetrahedron defined by
VectorsV1,V2, andV3.\[T = \frac{|\mathbf{V}_1\cdot(\mathbf{V}_2\times\mathbf{V}_3)|}{6}\]
-
Vpi¶ \(\mathbf{v}_{\pi}\) unit
VectorReturns the \(\pi\)-orbital axis vector (\(\mathbf{v}_{\pi}\)) unit vector.
\[\mathbf{V}_{\pi} = \frac{\mathbf{v}_{\pi}}{|\mathbf{v}_{\pi}|}\]
-
Vv1v2v3¶ Volume of the parallelepiped defined by
Vectorsv1,v2, andv3.Computes the scalar triple product of vectors \(\mathbf{v}_1\), \(\mathbf{v}_2\), and \(\mathbf{v}_3\):
\[V_{v_1v_2v_3} = |\mathbf{v}_1\cdot(\mathbf{v}_2\times\mathbf{v}_3)|\]
-
misalignment_angles¶ List of misalignment \(\phi_{i}\) angles.
-
pyramidalization_angles¶ List of pyramidalization \(\theta_{P}\) angles.
-
reciprocal_v1¶ Reciprocal
Vector\(\mathbf{v}_1^{*}\).Defined as:
\[\mathbf{v}_1^{*} = \frac{\mathbf{v}_2\times\mathbf{v}_3} {|\mathbf{v}_1\cdot(\mathbf{v}_2\times\mathbf{v}_3)|}\]
-
reciprocal_v2¶ Reciprocal
Vector\(\mathbf{v}_2^{*}\).Defined as:
\[\mathbf{v}_2^{*} = \frac{\mathbf{v}_3\times\mathbf{v}_1} {|\mathbf{v}_1\cdot(\mathbf{v}_2\times\mathbf{v}_3)|}\]
-
reciprocal_v3¶ Reciprocal
Vector\(\mathbf{v}_3^{*}\).Defined as:
\[\mathbf{v}_3^{*} = \frac{\mathbf{v}_1\times\mathbf{v}_2} {|\mathbf{v}_1\cdot(\mathbf{v}_2\times\mathbf{v}_3)|}\]
-
sigma_pi_angles¶ List of \(\theta_{\sigma-\pi}\) angles.
-
t¶ \(\frac{1}{6}\) the volume of the tetrahedron defined by
Vectorsv1,v2, andv3.\[t = \frac{|\mathbf{v}_1\cdot(\mathbf{v}_2\times\mathbf{v}_3)|}{6}\]
-
v1¶ Vector\(\mathbf{v}_1\) directed along the \(\sigma\)-orbital to the nearest-neighborAtominBond1.
-
v2¶ Vector\(\mathbf{v}_2\) directed along the \(\sigma\)-orbital to the nearest-neighborAtominBond2.
-
v3¶ Vector\(\mathbf{v}_3\) directed along the \(\sigma\)-orbital to the nearest-neighborAtominBond3.
-
vpi¶ General \(\pi\)-orbital axis vector (\(\mathbf{v}_{\pi}\)) formed by the terminii of
VectorsVectorsv1,v2, andv3.\[\mathbf{v}_{\pi} = \mathbf{v}_1 + \mathbf{v}_2\ + \mathbf{v}_3\]
Methods Documentation
-
POAVdict(rad2deg=False)[source] [edit on github][source]¶ Return dictionary of
POAVclass attributes.
-
todict()[source] [edit on github][source]¶ Return
dictof constructor parameters.
-