POAV¶
-
class
sknano.core.atoms.
POAV
(atom)[source] [edit on github][source]¶ Bases:
sknano.core.meta.BaseClass
Base class for POAV analysis.
Parameters: atom ( Atom
) –Atom
instance.Attributes
A
Magnitude of \(\mathbf{v}_{\pi}\). H
Altitude of tetrahedron. R1
Bond
1Vector
length
.R2
Bond
2Vector
length
.R3
Bond
3Vector
length
.T
\(\frac{1}{6}\) the volume of the tetrahedron defined by Vector
sV1
,V2
, andV3
.V1
\(\mathbf{v}_1\) unit Vector
V2
\(\mathbf{v}_2\) unit Vector
V3
\(\mathbf{v}_3\) unit Vector
Vpi
\(\mathbf{v}_{\pi}\) unit Vector
Vv1v2v3
Volume of the parallelepiped defined by Vector
sv1
,v2
, andv3
.fmtstr
Format string. misalignment_angles
List of misalignment \(\phi_{i}\) angles. pyramidalization_angles
List of pyramidalization \(\theta_{P}\) angles. reciprocal_v1
Reciprocal Vector
\(\mathbf{v}_1^{*}\).reciprocal_v2
Reciprocal Vector
\(\mathbf{v}_2^{*}\).reciprocal_v3
Reciprocal Vector
\(\mathbf{v}_3^{*}\).sigma_pi_angles
List of \(\theta_{\sigma-\pi}\) angles. t
\(\frac{1}{6}\) the volume of the tetrahedron defined by Vector
sv1
,v2
, andv3
.v1
Vector
\(\mathbf{v}_1\) directed along the \(\sigma\)-orbital to the nearest-neighborAtom
inBond
1.v2
Vector
\(\mathbf{v}_2\) directed along the \(\sigma\)-orbital to the nearest-neighborAtom
inBond
2.v3
Vector
\(\mathbf{v}_3\) directed along the \(\sigma\)-orbital to the nearest-neighborAtom
inBond
3.vpi
General \(\pi\)-orbital axis vector (\(\mathbf{v}_{\pi}\)) formed by the terminii of Vector
sVector
sv1
,v2
, andv3
.Methods
POAVdict
([rad2deg])Return dictionary of POAV
class attributes.todict
()Return dict
of constructor parameters.Attributes Summary
A
Magnitude of \(\mathbf{v}_{\pi}\). H
Altitude of tetrahedron. R1
Bond
1Vector
length
.R2
Bond
2Vector
length
.R3
Bond
3Vector
length
.T
\(\frac{1}{6}\) the volume of the tetrahedron defined by Vector
sV1
,V2
, andV3
.V1
\(\mathbf{v}_1\) unit Vector
V2
\(\mathbf{v}_2\) unit Vector
V3
\(\mathbf{v}_3\) unit Vector
Vpi
\(\mathbf{v}_{\pi}\) unit Vector
Vv1v2v3
Volume of the parallelepiped defined by Vector
sv1
,v2
, andv3
.misalignment_angles
List of misalignment \(\phi_{i}\) angles. pyramidalization_angles
List of pyramidalization \(\theta_{P}\) angles. reciprocal_v1
Reciprocal Vector
\(\mathbf{v}_1^{*}\).reciprocal_v2
Reciprocal Vector
\(\mathbf{v}_2^{*}\).reciprocal_v3
Reciprocal Vector
\(\mathbf{v}_3^{*}\).sigma_pi_angles
List of \(\theta_{\sigma-\pi}\) angles. t
\(\frac{1}{6}\) the volume of the tetrahedron defined by Vector
sv1
,v2
, andv3
.v1
Vector
\(\mathbf{v}_1\) directed along the \(\sigma\)-orbital to the nearest-neighborAtom
inBond
1.v2
Vector
\(\mathbf{v}_2\) directed along the \(\sigma\)-orbital to the nearest-neighborAtom
inBond
2.v3
Vector
\(\mathbf{v}_3\) directed along the \(\sigma\)-orbital to the nearest-neighborAtom
inBond
3.vpi
General \(\pi\)-orbital axis vector (\(\mathbf{v}_{\pi}\)) formed by the terminii of Vector
sVector
sv1
,v2
, andv3
.Methods Summary
POAVdict
([rad2deg])Return dictionary of POAV
class attributes.todict
()Return dict
of constructor parameters.Attributes Documentation
-
A
¶ Magnitude of \(\mathbf{v}_{\pi}\).
-
H
¶ Altitude of tetrahedron.
-
T
¶ \(\frac{1}{6}\) the volume of the tetrahedron defined by
Vector
sV1
,V2
, andV3
.\[T = \frac{|\mathbf{V}_1\cdot(\mathbf{V}_2\times\mathbf{V}_3)|}{6}\]
-
Vpi
¶ \(\mathbf{v}_{\pi}\) unit
Vector
Returns the \(\pi\)-orbital axis vector (\(\mathbf{v}_{\pi}\)) unit vector.
\[\mathbf{V}_{\pi} = \frac{\mathbf{v}_{\pi}}{|\mathbf{v}_{\pi}|}\]
-
Vv1v2v3
¶ Volume of the parallelepiped defined by
Vector
sv1
,v2
, andv3
.Computes the scalar triple product of vectors \(\mathbf{v}_1\), \(\mathbf{v}_2\), and \(\mathbf{v}_3\):
\[V_{v_1v_2v_3} = |\mathbf{v}_1\cdot(\mathbf{v}_2\times\mathbf{v}_3)|\]
-
misalignment_angles
¶ List of misalignment \(\phi_{i}\) angles.
-
pyramidalization_angles
¶ List of pyramidalization \(\theta_{P}\) angles.
-
reciprocal_v1
¶ Reciprocal
Vector
\(\mathbf{v}_1^{*}\).Defined as:
\[\mathbf{v}_1^{*} = \frac{\mathbf{v}_2\times\mathbf{v}_3} {|\mathbf{v}_1\cdot(\mathbf{v}_2\times\mathbf{v}_3)|}\]
-
reciprocal_v2
¶ Reciprocal
Vector
\(\mathbf{v}_2^{*}\).Defined as:
\[\mathbf{v}_2^{*} = \frac{\mathbf{v}_3\times\mathbf{v}_1} {|\mathbf{v}_1\cdot(\mathbf{v}_2\times\mathbf{v}_3)|}\]
-
reciprocal_v3
¶ Reciprocal
Vector
\(\mathbf{v}_3^{*}\).Defined as:
\[\mathbf{v}_3^{*} = \frac{\mathbf{v}_1\times\mathbf{v}_2} {|\mathbf{v}_1\cdot(\mathbf{v}_2\times\mathbf{v}_3)|}\]
-
sigma_pi_angles
¶ List of \(\theta_{\sigma-\pi}\) angles.
-
t
¶ \(\frac{1}{6}\) the volume of the tetrahedron defined by
Vector
sv1
,v2
, andv3
.\[t = \frac{|\mathbf{v}_1\cdot(\mathbf{v}_2\times\mathbf{v}_3)|}{6}\]
-
v1
¶ Vector
\(\mathbf{v}_1\) directed along the \(\sigma\)-orbital to the nearest-neighborAtom
inBond
1.
-
v2
¶ Vector
\(\mathbf{v}_2\) directed along the \(\sigma\)-orbital to the nearest-neighborAtom
inBond
2.
-
v3
¶ Vector
\(\mathbf{v}_3\) directed along the \(\sigma\)-orbital to the nearest-neighborAtom
inBond
3.
-
vpi
¶ General \(\pi\)-orbital axis vector (\(\mathbf{v}_{\pi}\)) formed by the terminii of
Vector
sVector
sv1
,v2
, andv3
.\[\mathbf{v}_{\pi} = \mathbf{v}_1 + \mathbf{v}_2\ + \mathbf{v}_3\]
Methods Documentation
-
POAVdict
(rad2deg=False)[source] [edit on github][source]¶ Return dictionary of
POAV
class attributes.
-
todict
()[source] [edit on github][source]¶ Return
dict
of constructor parameters.
-