Cube¶
-
class
sknano.core.geometric_regions.Cube(center=None, a=1)[source] [edit on github][source]¶ Bases:
sknano.core.geometric_regions.Geometric3DRegionGeometric3DRegionfor a cube.New in version 0.3.0.
Cuberepresents the region \(\left\{\{c_i\pm\frac{a}{2}\}|a>0\forall i\in\{x,y,z\}\right\}\).Parameters: - center (array_like, optional) – The \((x,y,z)\) coordinate of the axis-aligned cube center \((c_x, c_y, c_z)\).
- a (float, optional) – Side length \(a\) of axis-aligned cube.
Notes
Calling
Cubewith no parameters is equivalent toCube(center=[0, 0, 0], a=1).Attributes
aSide length \(a\) of the axis-aligned cube. bounding_boxBounding Cuboid.centerCenter point \((c_x, c_y, c_z)\) of axis-aligned cube. centroidAlias for center.fmtstrFormat string. measureAlias for volume, which is the measure of a 3D geometric region.ndimReturn the dimensions. pmaxPointat maximum extent.pminPointat minimum extent.volumeCubevolume, \(V=a^3\).Methods
center_centroid()Center centroidon origin.contains(point)Test region membership of pointinCube.get_points()Return list of points from GeometricRegion.pointsandGeometricRegion.vectorsrotate(**kwargs)Rotate GeometricRegionpointsandvectors.todict()Returns a dictof theCubeconstructor parameters.translate(t[, fix_anchor_points])Translate GeometricRegionpointsandvectorsbyVectort.Attributes Summary
aSide length \(a\) of the axis-aligned cube. centerCenter point \((c_x, c_y, c_z)\) of axis-aligned cube. centroidAlias for center.volumeCubevolume, \(V=a^3\).Methods Summary
contains(point)Test region membership of pointinCube.todict()Returns a dictof theCubeconstructor parameters.Attributes Documentation
-
a¶ Side length \(a\) of the axis-aligned cube.
-
center¶ Center point \((c_x, c_y, c_z)\) of axis-aligned cube.
Methods Documentation
-
contains(point)[source] [edit on github][source]¶ Test region membership of
pointinCube.Parameters: point (array_like) – Returns: Trueifpointis withinCube,FalseotherwiseReturn type: boolNotes
A
point\((p_x, p_y, p_z)\) is within the bounded region of a cube with center \((c_x, c_y, c_z)\) and side length \(a\) if the following is true:\[c_i-\frac{a}{2}\le p_i\le c_i+\frac{a}{2}\forall i\in \{x, y, z\}\]