Cylinder¶
-
class
sknano.core.geometric_regions.
Cylinder
(p1=None, p2=None, r=1)[source] [edit on github][source]¶ Bases:
sknano.core.geometric_regions.Geometric3DRegion
Geometric3DRegion
for a cylinder.New in version 0.3.10.
Represents a cylinder of radius \(r\) around the line from \((x_1, y_1, z_1)\) to \((x_2, y_2, z_2)\).
Parameters: Notes
Cylinder
represents a cylinder region \(\left\{p_1+\rho\cos(\theta)\mathbf{v}_1 + \rho\sin(\theta)\mathbf{v}_2 + \mathbf{v}_3 z| 0\le\theta\le 2\pi\land 0\le\rho\le 1\land 0\le z\le 1\right\}\) where \(\mathbf{v}_3=p_2 - p_1\) and the vectors \(\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}\) are orthogonal with \(|\mathbf{v}_1|=|\mathbf{v}_2|=1\), and \(p_1=(x_1, y_1, z_1)\) and \(p_2=(x_2,y_2,z_2)\).Calling
Cylinder
with no parameters is equivalent toCylinder
(p1=[0, 0, -1], p2=[0, 0, 1], r=1)
.Attributes
axis
Cylinder
axisVector
\(\boldsymbol{\ell}=p_2 - p_1\).bounding_box
Bounding Cuboid
.center
Alias for centroid
.centroid
Cylinder
centroid, \((c_x, c_y, c_z)\).fmtstr
Format string. measure
Alias for volume
, which is the measure of a 3D geometric region.ndim
Return the dimensions. p1
Cylinder
axis point \(p_1=(x_1, y_1, z_1)\).p2
Cylinder
axis point \(p_2=(x_2, y_2, z_2)\).pmax
Point
at maximum extent.pmin
Point
at minimum extent.r
Cylinder
radius \(r\).volume
Cylinder
volume, \(V=\pi r^2 \ell\).Methods
center_centroid
()Center centroid
on origin.contains
(point)Test region membership of point
inCylinder
.get_points
()Return list of points from GeometricRegion.points
andGeometricRegion.vectors
rotate
(**kwargs)Rotate GeometricRegion
points
andvectors
.todict
()Returns a dict
of theCylinder
constructor parameters.translate
(t[, fix_anchor_points])Translate GeometricRegion
points
andvectors
byVector
t
.Attributes Summary
axis
Cylinder
axisVector
\(\boldsymbol{\ell}=p_2 - p_1\).centroid
Cylinder
centroid, \((c_x, c_y, c_z)\).p1
Cylinder
axis point \(p_1=(x_1, y_1, z_1)\).p2
Cylinder
axis point \(p_2=(x_2, y_2, z_2)\).r
Cylinder
radius \(r\).volume
Cylinder
volume, \(V=\pi r^2 \ell\).Methods Summary
contains
(point)Test region membership of point
inCylinder
.todict
()Returns a dict
of theCylinder
constructor parameters.Attributes Documentation
-
axis
¶ Cylinder
axisVector
\(\boldsymbol{\ell}=p_2 - p_1\).Returns: 3D Vector
alongCylinder
axis fromPoint
\(p_1=(x_1, y_1, z_1)\) toPoint
\(p_2=(x_2, y_2, z_2)\).Return type: Vector
-
centroid
¶ Cylinder
centroid, \((c_x, c_y, c_z)\).Computed as:
\[c_x = \frac{x_1 + x_2}{2}\]\[c_y = \frac{y_1 + y_2}{2}\]\[c_z = \frac{z_1 + z_2}{2}\]
Methods Documentation
-
contains
(point)[source] [edit on github][source]¶ Test region membership of
point
inCylinder
.Parameters: point (array_like) – Returns: True
ifpoint
is withinCylinder
,False
otherwise.Return type: bool
Notes
A
point
\((p_x, p_y, p_z)\) is within the bounded region of a cylinder with radius \(r\) around the line from \(p_1=(x_1, y_1, z_1)\) to \(p_2 = (x_2, y_2, z_2)\) if the following is true:\[0\le q\le 1\land (x_1 - p_x + (x_2 - x_1) q)^2 + (y_1 - p_y + (y_2 - y_1) q)^2 + (z_1 - p_z + (z_2 - z_1) q)^2 \le r^2\]where \(q\) is:
\[q = \frac{(p_x - x_1)(x_2 - x_1) + (p_y - y_1)(y_2 - y_1) + (p_z - z_1)(z_2 - z_1)}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}\]
-