Ellipse¶
-
class
sknano.core.geometric_regions.Ellipse(center=None, rx=1, ry=1)[source] [edit on github][source]¶ Bases:
sknano.core.geometric_regions.Geometric2DRegionGeometric2DRegionfor an ellipse.New in version 0.3.0.
Represents an axis-aligned ellipse centered at \((c_x, c_y)\) with semi-axes lengths \(r_x, r_y\).
Parameters: - center (array_like, optional) – Center of axis-aligned ellipse with semi-axes lengths \(r_x, r_y\)
- ry (rx,) – Lengths of semi-axes \(r_x, r_y\)
Notes
Ellipserepresents the axis-aligned ellipsoid:\[\left\{\{x, y, z\}\in R^3| \left(\frac{x-c_x}{r_x}\right)^2 + \left(\frac{y-c_y}{r_y}\right)^2 + \left(\frac{z-c_z}{r_z}\right)^2\le 1\right\}\]Calling
Ellipsewith no parameters is equivalent toEllipse(center=[0, 0], rx=1, ry=1).Attributes
areaEllipsearea, \(A=\pi r_x r_y\).bounding_boxBounding Cuboid.centerEllipsecenter point \((c_x, c_y)\).centroidAlias for center.fmtstrFormat string. measureAlias for area, which is the measure of a 2D geometric region.ndimReturn the dimensions. pmaxPointat maximum extent.pminPointat minimum extent.rxLength of semi-axis \(r_x\). ryLength of semi-axis \(r_y\). Methods
center_centroid()Center centroidon origin.contains(point)Test region membership of pointinEllipse.get_points()Return list of points from GeometricRegion.pointsandGeometricRegion.vectorsrotate(**kwargs)Rotate GeometricRegionpointsandvectors.todict()Returns a dictof theEllipseconstructor parameters.translate(t[, fix_anchor_points])Translate GeometricRegionpointsandvectorsbyVectort.Attributes Summary
areaEllipsearea, \(A=\pi r_x r_y\).centerEllipsecenter point \((c_x, c_y)\).centroidAlias for center.rxLength of semi-axis \(r_x\). ryLength of semi-axis \(r_y\). Methods Summary
contains(point)Test region membership of pointinEllipse.todict()Returns a dictof theEllipseconstructor parameters.Attributes Documentation
-
rx¶ Length of semi-axis \(r_x\).
-
ry¶ Length of semi-axis \(r_y\).
Methods Documentation
-
contains(point)[source] [edit on github][source]¶ Test region membership of
pointinEllipse.Parameters: point (array_like) – Returns: Trueifpointis withinEllipse,FalseotherwiseReturn type: boolNotes
A
point\((p_x, p_y)\) is within the bounded region of an ellipse with center \((c_x, c_y)\) and semi-axes lengths \(r_x, r_y\) if the following is true:\[\left(\frac{p_x - c_x}{r_x}\right)^2 + \left(\frac{p_y - c_y}{r_y}\right)^2\le 1\]