Ellipse¶
-
class
sknano.core.geometric_regions.
Ellipse
(center=None, rx=1, ry=1)[source] [edit on github][source]¶ Bases:
sknano.core.geometric_regions.Geometric2DRegion
Geometric2DRegion
for an ellipse.New in version 0.3.0.
Represents an axis-aligned ellipse centered at \((c_x, c_y)\) with semi-axes lengths \(r_x, r_y\).
Parameters: - center (array_like, optional) – Center of axis-aligned ellipse with semi-axes lengths \(r_x, r_y\)
- ry (rx,) – Lengths of semi-axes \(r_x, r_y\)
Notes
Ellipse
represents the axis-aligned ellipsoid:\[\left\{\{x, y, z\}\in R^3| \left(\frac{x-c_x}{r_x}\right)^2 + \left(\frac{y-c_y}{r_y}\right)^2 + \left(\frac{z-c_z}{r_z}\right)^2\le 1\right\}\]Calling
Ellipse
with no parameters is equivalent toEllipse
(center=[0, 0], rx=1, ry=1)
.Attributes
area
Ellipse
area, \(A=\pi r_x r_y\).bounding_box
Bounding Cuboid
.center
Ellipse
center point \((c_x, c_y)\).centroid
Alias for center
.fmtstr
Format string. measure
Alias for area
, which is the measure of a 2D geometric region.ndim
Return the dimensions. pmax
Point
at maximum extent.pmin
Point
at minimum extent.rx
Length of semi-axis \(r_x\). ry
Length of semi-axis \(r_y\). Methods
center_centroid
()Center centroid
on origin.contains
(point)Test region membership of point
inEllipse
.get_points
()Return list of points from GeometricRegion.points
andGeometricRegion.vectors
rotate
(**kwargs)Rotate GeometricRegion
points
andvectors
.todict
()Returns a dict
of theEllipse
constructor parameters.translate
(t[, fix_anchor_points])Translate GeometricRegion
points
andvectors
byVector
t
.Attributes Summary
area
Ellipse
area, \(A=\pi r_x r_y\).center
Ellipse
center point \((c_x, c_y)\).centroid
Alias for center
.rx
Length of semi-axis \(r_x\). ry
Length of semi-axis \(r_y\). Methods Summary
contains
(point)Test region membership of point
inEllipse
.todict
()Returns a dict
of theEllipse
constructor parameters.Attributes Documentation
-
rx
¶ Length of semi-axis \(r_x\).
-
ry
¶ Length of semi-axis \(r_y\).
Methods Documentation
-
contains
(point)[source] [edit on github][source]¶ Test region membership of
point
inEllipse
.Parameters: point (array_like) – Returns: True
ifpoint
is withinEllipse
,False
otherwiseReturn type: bool
Notes
A
point
\((p_x, p_y)\) is within the bounded region of an ellipse with center \((c_x, c_y)\) and semi-axes lengths \(r_x, r_y\) if the following is true:\[\left(\frac{p_x - c_x}{r_x}\right)^2 + \left(\frac{p_y - c_y}{r_y}\right)^2\le 1\]