Ellipsoid¶
-
class
sknano.core.geometric_regions.Ellipsoid(center=None, rx=1, ry=1, rz=1)[source] [edit on github][source]¶ Bases:
sknano.core.geometric_regions.Geometric3DRegionGeometric3DRegionfor an ellipsoid.New in version 0.3.0.
Represents an axis-aligned ellipsoid centered at the point \((c_x, c_y, c_z)\) with semi-axes lengths \(r_x, r_y, r_z\).
Parameters: Notes
Ellipsoidrepresents the axis-aligned ellipsoid:\[\left\{\{x, y, z\}\in R^3| \left(\frac{x-c_x}{r_x}\right)^2 + \left(\frac{y-c_y}{r_y}\right)^2 + \left(\frac{z-c_z}{r_z}\right)^2\le 1\right\}\]Calling
Ellipsoidwith no parameters is equivalent toEllipsoid(center=[0, 0, 0], rx=1, ry=1, rz=1).Attributes
bounding_boxBounding Cuboid.centerEllipsoidcenter point \((c_x, c_y, c_z)\).centroidAlias for center.fmtstrFormat string. measureAlias for volume, which is the measure of a 3D geometric region.ndimReturn the dimensions. pmaxPointat maximum extent.pminPointat minimum extent.rxLength of semi-axis \(r_x\). ryLength of semi-axis \(r_y\). rzLength of semi-axis \(r_z\). volumeEllipsoidvolume, \(V=\frac{4}{3}\pi r_x r_y r_z\).Methods
center_centroid()Center centroidon origin.contains(point)Test region membership of pointinEllipsoid.get_points()Return list of points from GeometricRegion.pointsandGeometricRegion.vectorsrotate(**kwargs)Rotate GeometricRegionpointsandvectors.todict()Returns a dictof theEllipsoidconstructor parameters.translate(t[, fix_anchor_points])Translate GeometricRegionpointsandvectorsbyVectort.Attributes Summary
centerEllipsoidcenter point \((c_x, c_y, c_z)\).centroidAlias for center.rxLength of semi-axis \(r_x\). ryLength of semi-axis \(r_y\). rzLength of semi-axis \(r_z\). volumeEllipsoidvolume, \(V=\frac{4}{3}\pi r_x r_y r_z\).Methods Summary
contains(point)Test region membership of pointinEllipsoid.todict()Returns a dictof theEllipsoidconstructor parameters.Attributes Documentation
-
rx¶ Length of semi-axis \(r_x\).
-
ry¶ Length of semi-axis \(r_y\).
-
rz¶ Length of semi-axis \(r_z\).
Methods Documentation
-
contains(point)[source] [edit on github][source]¶ Test region membership of
pointinEllipsoid.Parameters: point (array_like) – Returns: Trueifpointis withinEllipsoid,FalseotherwiseReturn type: boolNotes
A
point\((p_x, p_y, p_z)\) is within the bounded region of an ellipsoid with center \((c_x, c_y, c_z)\) and semi-axes lengths \(r_x, r_y, r_z\) if the following is true:\[\left(\frac{p_x - c_x}{r_x}\right)^2 + \left(\frac{p_y - c_y}{r_y}\right)^2 + \left(\frac{p_z - c_z}{r_z}\right)^2\le 1\]
-