SWNTMixin¶
-
class
sknano.core.structures.
SWNTMixin
[source] [edit on github][source]¶ Bases:
object
Mixin class for nanotube classes.
Attributes
Ch
SWNT circumference \(|\mathbf{C}_h|\) in Å Ch_vec
SWNT chiral vector. Lz
SWNT length \(L_z = L_{\mathrm{tube}}\) in Angstroms. M
\(M = np - nq\) N
Number of graphene hexagons in nanotube unit cell. Natoms
Number of atoms in nanotube. Natoms_per_tube
Number of atoms in nanotube \(N_{\mathrm{atoms/tube}}\). Natoms_per_unit_cell
Number of atoms in nanotube unit cell. R
Symmetry vector \(\mathbf{R} = (p, q)\). T
Length of nanotube unit cell \(|\mathbf{T}|\) in Å. Tvec
SWNT
translation vector.chiral_angle
Chiral angle \(\theta_c\) in degrees. chiral_type
SWNT
chiral type.d
\(d=\gcd{(n, m)}\) dR
\(d_R=\gcd{(2n + m, 2m + n)}\) dt
Nanotube diameter \(d_t = \frac{|\mathbf{C}_h|}{\pi}\) in Å. electronic_type
SWNT electronic type. fix_Lz
bool
indicating whetherSWNTMixin.Lz
is fixed or calculated.linear_mass_density
Linear mass density of nanotube in g/Å. m
Chiral index \(m\). mass
SWNT mass in grams. n
Chiral index \(n\). nz
Number of nanotube unit cells along the \(z\)-axis. rt
Nanotube radius \(r_t = \frac{|\mathbf{C}_h|}{2\pi}\) in Å. t1
\(t_{1} = \frac{2m + n}{d_{R}}\) t2
\(t_2 = -\frac{2n + m}{d_R}\) tube_length
Alias for SWNT.Lz
tube_mass
An alias for mass
.unit_cell_mass
Unit cell mass in atomic mass units. unit_cell_symmetry_params
Tuple of SWNT
unit cell symmetry parameters.Attributes Summary
Ch
SWNT circumference \(|\mathbf{C}_h|\) in Å Ch_vec
SWNT chiral vector. Lz
SWNT length \(L_z = L_{\mathrm{tube}}\) in Angstroms. M
\(M = np - nq\) N
Number of graphene hexagons in nanotube unit cell. Natoms
Number of atoms in nanotube. Natoms_per_tube
Number of atoms in nanotube \(N_{\mathrm{atoms/tube}}\). Natoms_per_unit_cell
Number of atoms in nanotube unit cell. R
Symmetry vector \(\mathbf{R} = (p, q)\). T
Length of nanotube unit cell \(|\mathbf{T}|\) in Å. Tvec
SWNT
translation vector.chiral_angle
Chiral angle \(\theta_c\) in degrees. chiral_type
SWNT
chiral type.d
\(d=\gcd{(n, m)}\) dR
\(d_R=\gcd{(2n + m, 2m + n)}\) dt
Nanotube diameter \(d_t = \frac{|\mathbf{C}_h|}{\pi}\) in Å. electronic_type
SWNT electronic type. fix_Lz
bool
indicating whetherSWNTMixin.Lz
is fixed or calculated.linear_mass_density
Linear mass density of nanotube in g/Å. m
Chiral index \(m\). mass
SWNT mass in grams. n
Chiral index \(n\). nz
Number of nanotube unit cells along the \(z\)-axis. rt
Nanotube radius \(r_t = \frac{|\mathbf{C}_h|}{2\pi}\) in Å. t1
\(t_{1} = \frac{2m + n}{d_{R}}\) t2
\(t_2 = -\frac{2n + m}{d_R}\) tube_length
Alias for SWNT.Lz
tube_mass
An alias for mass
.unit_cell_mass
Unit cell mass in atomic mass units. unit_cell_symmetry_params
Tuple of SWNT
unit cell symmetry parameters.Attributes Documentation
-
Ch
¶ SWNT circumference \(|\mathbf{C}_h|\) in Å
-
Ch_vec
¶ SWNT chiral vector.
-
Lz
¶ SWNT length \(L_z = L_{\mathrm{tube}}\) in Angstroms.
-
M
¶ \(M = np - nq\)
\(M\) is the number of multiples of the translation vector \(\mathbf{T}\) in the vector \(N\mathbf{R}\).
-
N
¶ Number of graphene hexagons in nanotube unit cell.
\[N = \frac{4(n^2 + m^2 + nm)}{d_R}\]
-
Natoms
¶ Number of atoms in nanotube.
Changed in version 0.3.0: Returns total number of atoms per nanotube. Use
Natoms_per_unit_cell
to get the number of atoms per unit cell.\[N_{\mathrm{atoms}} = 2N\times n_z = \frac{4(n^2 + m^2 + nm)}{d_R}\times n_z\]where \(N\) is the number of graphene hexagons mapped to the nanotube unit cell and \(n_z\) is the number of unit cells.
-
Natoms_per_tube
¶ Number of atoms in nanotube \(N_{\mathrm{atoms/tube}}\).
-
Natoms_per_unit_cell
¶ Number of atoms in nanotube unit cell.
\[N_{\mathrm{atoms}} = 2N = \frac{4(n^2 + m^2 + nm)}{d_R}\]where \(N\) is the number of graphene hexagons mapped to the nanotube unit cell.
-
R
¶ Symmetry vector \(\mathbf{R} = (p, q)\).
\[\mathbf{R} = p\mathbf{a}_1 + q\mathbf{a}_2\]
-
T
¶ Length of nanotube unit cell \(|\mathbf{T}|\) in Å.
\[|\mathbf{T}| = \frac{\sqrt{3} |\mathbf{C}_{h}|}{d_{R}}\]
-
chiral_angle
¶ Chiral angle \(\theta_c\) in degrees.
\[\theta_c = \tan^{-1}\left(\frac{\sqrt{3} m}{2n + m}\right)\]
-
d
¶ \(d=\gcd{(n, m)}\)
\(d\) is the Greatest Common Divisor of \(n\) and \(m\).
-
dR
¶ \(d_R=\gcd{(2n + m, 2m + n)}\)
\(d_R\) is the Greatest Common Divisor of \(2n + m\) and \(2m + n\).
-
dt
¶ Nanotube diameter \(d_t = \frac{|\mathbf{C}_h|}{\pi}\) in Å.
-
electronic_type
¶ SWNT electronic type.
New in version 0.2.7.
The electronic type is determined as follows:
if \((2n + m)\,\mathrm{mod}\,3=0\), the nanotube is metallic.
if \((2n + m)\,\mathrm{mod}\,3=1\), the nanotube is semiconducting, type 1.
if \((2n + m)\,\mathrm{mod}\,3=2\), the nanotube is semiconducting, type 2.
The \(x\,\mathrm{mod}\,y\) notation is mathematical shorthand for the modulo operation, which computes the remainder of the division of \(x\) by \(y\). So, for example, all armchair nanotubes must be metallic since the chiral indices satisfy: \(2n + m = 2n + n = 3n\) and therefore \(3n\,\mathrm{mod}\,3\) i.e. the remainder of the division of \(3n/3=n\) is always zero.
Note
Mathematically, \((2n + m)\,\mathrm{mod}\,3\) is equivalent to \((n - m)\,\mathrm{mod}\,3\) when distinguishing between metallic and semiconducting. However, when distinguishing between semiconducting types, one must be careful to observe the following convention:
- Semiconducting, type 1 means:
- \((2n + m)\,\mathrm{mod}\,3=1\)
- \((n - m)\,\mathrm{mod}\,3=2\)
- Semiconducting, type 2 means:
- \((2n + m)\,\mathrm{mod}\,3=2\)
- \((n - m)\,\mathrm{mod}\,3=1\)
- Semiconducting, type 1 means:
-
fix_Lz
¶ bool
indicating whetherSWNTMixin.Lz
is fixed or calculated.
-
linear_mass_density
¶ Linear mass density of nanotube in g/Å.
-
m
¶ Chiral index \(m\).
The component of the chiral vector \(\mathbf{C}_h\) along \(\mathbf{a}_2\):
\[\mathbf{C}_h = n\mathbf{a}_1 + m\mathbf{a}_2 = (n, m)\]
-
mass
¶ SWNT mass in grams.
-
n
¶ Chiral index \(n\).
The component of the chiral vector \(\mathbf{C}_h\) along \(\mathbf{a}_1\):
\[\mathbf{C}_h = n\mathbf{a}_1 + m\mathbf{a}_2 = (n, m)\]
-
nz
¶ Number of nanotube unit cells along the \(z\)-axis.
-
rt
¶ Nanotube radius \(r_t = \frac{|\mathbf{C}_h|}{2\pi}\) in Å.
-
t1
¶ \(t_{1} = \frac{2m + n}{d_{R}}\)
where \(d_R = \gcd{(2n + m, 2m + n)}\).
The component of the translation vector \(\mathbf{T}\) along \(\mathbf{a}_1\):
\[\mathbf{T} = t_1\mathbf{a}_{1} + t_2\mathbf{a}_2\]
-
t2
¶ \(t_2 = -\frac{2n + m}{d_R}\)
where \(d_R = \gcd{(2n + m, 2m + n)}\).
The component of the translation vector \(\mathbf{T}\) along \(\mathbf{a}_2\):
\[\mathbf{T} = t_1\mathbf{a}_1 + t_2\mathbf{a}_2\]
-
tube_length
¶ Alias for
SWNT.Lz
-
unit_cell_mass
¶ Unit cell mass in atomic mass units.
-