SWNTMixin

class sknano.core.structures.SWNTMixin[source] [edit on github][source]

Bases: object

Mixin class for nanotube classes.

Attributes

Ch SWNT circumference |Ch| in
Ch_vec SWNT chiral vector.
Lz SWNT length Lz=Ltube in Angstroms.
M M=npnq
N Number of graphene hexagons in nanotube unit cell.
Natoms Number of atoms in nanotube.
Natoms_per_tube Number of atoms in nanotube Natoms/tube.
Natoms_per_unit_cell Number of atoms in nanotube unit cell.
R Symmetry vector R=(p,q).
T Length of nanotube unit cell |T| in Å.
Tvec SWNT translation vector.
chiral_angle Chiral angle θc in degrees.
chiral_type SWNT chiral type.
d d=gcd
dR d_R=\gcd{(2n + m, 2m + n)}
dt Nanotube diameter d_t = \frac{|\mathbf{C}_h|}{\pi} in Å.
electronic_type SWNT electronic type.
fix_Lz bool indicating whether SWNTMixin.Lz is fixed or calculated.
linear_mass_density Linear mass density of nanotube in g/Å.
m Chiral index m.
mass SWNT mass in grams.
n Chiral index n.
nz Number of nanotube unit cells along the z-axis.
rt Nanotube radius r_t = \frac{|\mathbf{C}_h|}{2\pi} in Å.
t1 t_{1} = \frac{2m + n}{d_{R}}
t2 t_2 = -\frac{2n + m}{d_R}
tube_length Alias for SWNT.Lz
tube_mass An alias for mass.
unit_cell_mass Unit cell mass in atomic mass units.
unit_cell_symmetry_params Tuple of SWNT unit cell symmetry parameters.

Attributes Summary

Ch SWNT circumference |\mathbf{C}_h| in
Ch_vec SWNT chiral vector.
Lz SWNT length L_z = L_{\mathrm{tube}} in Angstroms.
M M = np - nq
N Number of graphene hexagons in nanotube unit cell.
Natoms Number of atoms in nanotube.
Natoms_per_tube Number of atoms in nanotube N_{\mathrm{atoms/tube}}.
Natoms_per_unit_cell Number of atoms in nanotube unit cell.
R Symmetry vector \mathbf{R} = (p, q).
T Length of nanotube unit cell |\mathbf{T}| in Å.
Tvec SWNT translation vector.
chiral_angle Chiral angle \theta_c in degrees.
chiral_type SWNT chiral type.
d d=\gcd{(n, m)}
dR d_R=\gcd{(2n + m, 2m + n)}
dt Nanotube diameter d_t = \frac{|\mathbf{C}_h|}{\pi} in Å.
electronic_type SWNT electronic type.
fix_Lz bool indicating whether SWNTMixin.Lz is fixed or calculated.
linear_mass_density Linear mass density of nanotube in g/Å.
m Chiral index m.
mass SWNT mass in grams.
n Chiral index n.
nz Number of nanotube unit cells along the z-axis.
rt Nanotube radius r_t = \frac{|\mathbf{C}_h|}{2\pi} in Å.
t1 t_{1} = \frac{2m + n}{d_{R}}
t2 t_2 = -\frac{2n + m}{d_R}
tube_length Alias for SWNT.Lz
tube_mass An alias for mass.
unit_cell_mass Unit cell mass in atomic mass units.
unit_cell_symmetry_params Tuple of SWNT unit cell symmetry parameters.

Attributes Documentation

Ch

SWNT circumference |\mathbf{C}_h| in

Ch_vec

SWNT chiral vector.

Lz

SWNT length L_z = L_{\mathrm{tube}} in Angstroms.

M

M = np - nq

M is the number of multiples of the translation vector \mathbf{T} in the vector N\mathbf{R}.

N

Number of graphene hexagons in nanotube unit cell.

N = \frac{4(n^2 + m^2 + nm)}{d_R}
Natoms

Number of atoms in nanotube.

Changed in version 0.3.0: Returns total number of atoms per nanotube. Use Natoms_per_unit_cell to get the number of atoms per unit cell.

N_{\mathrm{atoms}} = 2N\times n_z = \frac{4(n^2 + m^2 + nm)}{d_R}\times n_z

where N is the number of graphene hexagons mapped to the nanotube unit cell and n_z is the number of unit cells.

Natoms_per_tube

Number of atoms in nanotube N_{\mathrm{atoms/tube}}.

Natoms_per_unit_cell

Number of atoms in nanotube unit cell.

N_{\mathrm{atoms}} = 2N = \frac{4(n^2 + m^2 + nm)}{d_R}

where N is the number of graphene hexagons mapped to the nanotube unit cell.

R

Symmetry vector \mathbf{R} = (p, q).

\mathbf{R} = p\mathbf{a}_1 + q\mathbf{a}_2
T

Length of nanotube unit cell |\mathbf{T}| in Å.

|\mathbf{T}| = \frac{\sqrt{3} |\mathbf{C}_{h}|}{d_{R}}
Tvec

SWNT translation vector.

chiral_angle

Chiral angle \theta_c in degrees.

\theta_c = \tan^{-1}\left(\frac{\sqrt{3} m}{2n + m}\right)
chiral_type

SWNT chiral type.

d

d=\gcd{(n, m)}

d is the Greatest Common Divisor of n and m.

dR

d_R=\gcd{(2n + m, 2m + n)}

d_R is the Greatest Common Divisor of 2n + m and 2m + n.

dt

Nanotube diameter d_t = \frac{|\mathbf{C}_h|}{\pi} in Å.

electronic_type

SWNT electronic type.

New in version 0.2.7.

The electronic type is determined as follows:

if (2n + m)\,\mathrm{mod}\,3=0, the nanotube is metallic.

if (2n + m)\,\mathrm{mod}\,3=1, the nanotube is semiconducting, type 1.

if (2n + m)\,\mathrm{mod}\,3=2, the nanotube is semiconducting, type 2.

The x\,\mathrm{mod}\,y notation is mathematical shorthand for the modulo operation, which computes the remainder of the division of x by y. So, for example, all armchair nanotubes must be metallic since the chiral indices satisfy: 2n + m = 2n + n = 3n and therefore 3n\,\mathrm{mod}\,3 i.e. the remainder of the division of 3n/3=n is always zero.

Note

Mathematically, (2n + m)\,\mathrm{mod}\,3 is equivalent to (n - m)\,\mathrm{mod}\,3 when distinguishing between metallic and semiconducting. However, when distinguishing between semiconducting types, one must be careful to observe the following convention:

  • Semiconducting, type 1 means:
    • (2n + m)\,\mathrm{mod}\,3=1
    • (n - m)\,\mathrm{mod}\,3=2
  • Semiconducting, type 2 means:
    • (2n + m)\,\mathrm{mod}\,3=2
    • (n - m)\,\mathrm{mod}\,3=1
fix_Lz

bool indicating whether SWNTMixin.Lz is fixed or calculated.

linear_mass_density

Linear mass density of nanotube in g/Å.

m

Chiral index m.

The component of the chiral vector \mathbf{C}_h along \mathbf{a}_2:

\mathbf{C}_h = n\mathbf{a}_1 + m\mathbf{a}_2 = (n, m)
mass

SWNT mass in grams.

n

Chiral index n.

The component of the chiral vector \mathbf{C}_h along \mathbf{a}_1:

\mathbf{C}_h = n\mathbf{a}_1 + m\mathbf{a}_2 = (n, m)
nz

Number of nanotube unit cells along the z-axis.

rt

Nanotube radius r_t = \frac{|\mathbf{C}_h|}{2\pi} in Å.

t1

t_{1} = \frac{2m + n}{d_{R}}

where d_R = \gcd{(2n + m, 2m + n)}.

The component of the translation vector \mathbf{T} along \mathbf{a}_1:

\mathbf{T} = t_1\mathbf{a}_{1} + t_2\mathbf{a}_2
t2

t_2 = -\frac{2n + m}{d_R}

where d_R = \gcd{(2n + m, 2m + n)}.

The component of the translation vector \mathbf{T} along \mathbf{a}_2:

\mathbf{T} = t_1\mathbf{a}_1 + t_2\mathbf{a}_2
tube_length

Alias for SWNT.Lz

tube_mass

An alias for mass.

unit_cell_mass

Unit cell mass in atomic mass units.

unit_cell_symmetry_params

Tuple of SWNT unit cell symmetry parameters.