# -*- coding: utf-8 -*-
"""
===============================================================================
Functions for linear algebra transforms (:mod:`sknano.core.math.transforms`)
===============================================================================
.. currentmodule:: sknano.core.math.transforms
"""
from __future__ import absolute_import, division, print_function, \
unicode_literals
__docformat__ = 'restructuredtext en'
from itertools import combinations
import numpy as np
__all__ = ['rotate', 'Rx', 'Ry', 'Rz', 'rotation_matrix',
'reflection_matrix', 'scaling_matrix', 'translation_matrix',
'translation_from_augmented_matrix', 'translation_from_matrix',
'rotation_matrix_from_augmented_matrix',
'transformation_matrix', 'axis_angle_from_rotation_matrix']
I = np.identity(4)
_str2array = {axis: I[:3, i] for i, axis in enumerate(('x', 'y', 'z'))}
[docs]def rotate(obj, angle=None, axis=None, anchor_point=None, rot_point=None,
from_vector=None, to_vector=None, degrees=False,
transform_matrix=None, verbose=False, **kwargs):
"""Rotate object.
.. versionadded:: 0.3.0
Parameters
----------
obj : array_like
angle : float, optional
Rotation angle in **radians** *unless* `degrees` is `True`.
axis : {array_like, str, :class:`~sknano.core.math.Vector`}
Rotation axis.
anchor_point : {array_like, :class:`~sknano.core.math.Point`}
rot_point : :class:`~sknano.core.math.Point`, optional
from_vector, to_vector : :class:`~sknano.core.math.Vector`, optional
degrees : bool, optional
transform_matrix : array_like, optional
Returns
-------
rotated object : array_like
"""
if axis is None and 'rot_axis' in kwargs:
axis = kwargs['rot_axis']
del kwargs['rot_axis']
if verbose:
print('In rotate\n'
'obj: {}\n'.format(obj) +
'axis: {}\n'.format(axis) +
'anchor_point: {}\n'.format(anchor_point) +
'transform_matrix: {}\n'.format(transform_matrix))
objarr = np.asarray(obj)
nd = len(objarr)
objarr = np.append(objarr, 1)
if transform_matrix is not None and \
isinstance(transform_matrix, np.ndarray):
if transform_matrix.shape[-1] != nd + 1:
augmented_tmatrix = np.eye(nd + 1)
augmented_tmatrix[:nd, :nd] = transform_matrix
transform_matrix = augmented_tmatrix
try:
rot_obj = np.dot(transform_matrix, objarr)[:-1]
except TypeError:
if axis is None and from_vector is None and to_vector is None and \
nd > 2:
raise ValueError('Expected `axis` to be a 3D `Vector`.')
transform_matrix = \
transformation_matrix(angle=angle, axis=axis,
anchor_point=anchor_point,
rot_point=rot_point, from_vector=from_vector,
to_vector=to_vector, degrees=degrees,
verbose=verbose, **kwargs)
return rotate(obj, transform_matrix=transform_matrix)
else:
if rot_obj.__class__ != obj.__class__:
rot_obj = obj.__class__(rot_obj)
return rot_obj
[docs]def Rx(angle, degrees=False):
"""Generate the :math:`3\\times3` rotation matrix :math:`R_x(\\theta)` \
for a rotation about the :math:`x` axis by an angle :math:`\\theta`.
.. math::
R_x = \\begin{bmatrix}
1 & 0 & 0\\\\
0 & \\cos\\theta & -\\sin\\theta\\\\
0 & \\sin\\theta & \\cos\\theta
\\end{bmatrix}
Parameters
----------
angle : float
The rotation angle :math:`\\theta` in *radians*. If the angle is
given in *degrees*, then you must set `degrees=True` to correctly
calculate the rotation matrix.
degrees : bool, optional
if `True`, then `angle` is converted from degrees to radians.
Returns
-------
:class:`~numpy:numpy.ndarray`
:math:`3\\times3` rotation matrix :math:`R_x(\\theta)` for a
rotation about the :math:`x` axis by an angle :math:`\\theta`.
Examples
--------
>>> import numpy as np
>>> from sknano.core.math import Rx
>>> Rx(np.pi/4)
array([[ 1. , 0. , 0. ],
[ 0. , 0.70710678, -0.70710678],
[ 0. , 0.70710678, 0.70710678]])
>>> np.alltrue(Rx(np.pi/4) == Rx(45, degrees=True))
True
"""
if degrees:
angle = np.radians(angle)
cosa = np.cos(angle)
sina = np.sin(angle)
Rmat = np.array([[1.0, 0.0, 0.0], [0.0, cosa, -sina], [0.0, sina, cosa]])
Rmat[np.where(np.abs(Rmat) <= np.finfo(float).eps)] = 0.0
return Rmat
[docs]def Ry(angle, degrees=False):
"""Generate the :math:`3\\times3` rotation matrix :math:`R_y(\\theta)` \
for a rotation about the :math:`y` axis by an angle :math:`\\theta`.
.. math::
R_y = \\begin{pmatrix}
\\cos\\theta & 0 & \\sin\\theta\\\\
0 & 1 & 0\\\\
-\\sin\\theta & 0 & \\cos\\theta
\\end{pmatrix}
Parameters
----------
angle : float
The rotation angle :math:`\\theta` in *radians*. If the angle is
given in *degrees*, then you must set `degrees=True` to correctly
calculate the rotation matrix.
degrees : bool, optional
if `True`, then `angle` is converted from degrees to radians.
Returns
-------
:class:`~numpy:numpy.ndarray`
:math:`3\\times3` rotation matrix :math:`R_y(\\theta)` for a
rotation about the :math:`y` axis by an angle :math:`\\theta`:
Examples
--------
>>> import numpy as np
>>> from sknano.core.math import Ry
>>> Ry(np.pi/4)
array([[ 0.70710678, 0. , 0.70710678],
[ 0. , 1. , 0. ],
[-0.70710678, 0. , 0.70710678]])
>>> np.alltrue(Ry(np.pi/4) == Ry(45, degrees=True))
True
"""
if degrees:
angle = np.radians(angle)
cosa = np.cos(angle)
sina = np.sin(angle)
Rmat = np.array([[cosa, 0.0, sina], [0.0, 1.0, 0.0], [-sina, 0.0, cosa]])
Rmat[np.where(np.abs(Rmat) <= np.finfo(float).eps)] = 0.0
return Rmat
[docs]def Rz(angle, degrees=False):
"""Generate the :math:`3\\times3` rotation matrix :math:`R_z(\\theta)` \
for a rotation about the :math:`z` axis by an angle :math:`\\theta`.
.. math::
R_z = \\begin{pmatrix}
\\cos\\theta & -\\sin\\theta & 0\\\\
\\sin\\theta & \\cos\\theta & 0\\\\
0 & 0 & 1
\\end{pmatrix}
Parameters
----------
angle : float
The rotation angle :math:`\\theta` in *radians*. If the angle is
given in *degrees*, then you must set `degrees=True` to correctly
calculate the rotation matrix.
degrees : bool, optional
if `True`, then `angle` is converted from degrees to radians.
Returns
-------
:class:`~numpy:numpy.ndarray`
:math:`3\\times3` rotation matrix :math:`R_z(\\theta)` for a
rotation about the :math:`z` axis by an angle :math:`\\theta`.
Examples
--------
>>> import numpy as np
>>> from sknano.core.math import Rz
>>> Rz(np.pi/4)
array([[ 0.70710678, -0.70710678, 0. ],
[ 0.70710678, 0.70710678, 0. ],
[ 0. , 0. , 1. ]])
>>> np.alltrue(Rz(np.pi/4) == Rz(45, degrees=True))
True
"""
if degrees:
angle = np.radians(angle)
cosa = np.cos(angle)
sina = np.sin(angle)
Rmat = np.array([[cosa, -sina, 0.0], [sina, cosa, 0.0], [0.0, 0.0, 1.0]])
Rmat[np.where(np.abs(Rmat) <= np.finfo(float).eps)] = 0.0
return Rmat
[docs]def reflection_matrix(v):
"""Generate reflection matrix that represents reflection of points \
in a mirror plane defined by normal `Vector` `v`.
Parameters
----------
v : :class:`~sknano.core.math.Vector`
Returns
-------
:class:`~numpy:numpy.ndarray`
"""
from .vector import Vector
v = Vector(v)
Rmat = np.zeros((v.nd, v.nd))
for i in range(v.nd):
Rmat[i, i] = 1 - 2 * v[i] ** 2 / v.norm ** 2
for i, j in combinations(list(range(v.nd)), 2):
Rmat[i, j] = Rmat[j, i] = -2 * v[i] * v[j] / v.norm ** 2
Rmat[np.where(np.abs(Rmat) <= np.finfo(float).eps)] = 0.0
return Rmat
[docs]def rotation_matrix(angle=None, axis=None, anchor_point=None,
rot_point=None, from_vector=None, to_vector=None,
degrees=False, verbose=False, **kwargs):
"""Generate an :math:`n\\times n` rotation matrix.
.. versionadded:: 0.3.0
Parameters
----------
angle : float
Rotation angle in **radians**. If `degrees` is `True`, `angle` will be
converted to radians from degrees. The *sense* of the rotation is
defined by the *right hand rule*: If your right-hand's thumb points
along the `axis`, then your fingers wrap around the axis in the
*positive sense* of the rotation angle.
axis : {None, array_like, str}, optional
An :math:`n`-element array_like sequence defining the :math:`n`
components of the rotation axis or the string `x`, `y`, or `z`
representing the :math:`x, y, z` axes of a Cartesian coordinate
system in 3D with unit vectors
:math:`\\mathbf{v}_x=\\mathbf{\\hat{x}}`,
:math:`\\mathbf{v}_y=\\mathbf{\\hat{y}}`, and
:math:`\\mathbf{v}_z=\\mathbf{\\hat{z}}`, respectively.
anchor_point : :class:`~sknano.core.math.Point`, optional
rot_point : :class:`~sknano.core.math.Point`, optional
from_vector, to_vector : :class:`~sknano.core.math.Vector`, optional
degrees : bool, optional
If `True`, convert `angle` from degrees to radians.
Returns
-------
Rmat : :class:`~numpy:numpy.ndarray`
If `axis` is `None` then `Rmat` will be a :math:`2D`
rotation matrix :math:`R(\\theta)` that rotates :math:`2D` vectors
counterclockwise by `angle` :math:`\\theta`.
If `axis` is not `None` then `Rmat` will be a rotation matrix that
gives a rotation around the direction of the vector `axis`.
"""
if axis is None and 'rot_axis' in kwargs:
axis = kwargs['rot_axis']
del kwargs['rot_axis']
Rmat = transformation_matrix(angle=angle, axis=axis,
anchor_point=anchor_point,
rot_point=rot_point, from_vector=from_vector,
to_vector=to_vector, degrees=degrees,
verbose=verbose, **kwargs)
return Rmat[:-1, :-1]
[docs]def scaling_matrix(s=None, v=None):
"""Return scaling matrix.
Parameters
----------
s : {list, float}
v : {None, :class:`~sknano.core.math.Vector`}, optional
Returns
-------
:class:`~numpy:numpy.ndarray`
"""
if not isinstance(s, (list, float)):
raise TypeError('Expected `s` to be a list or a float.')
if isinstance(s, float) and not isinstance(v, (list, np.ndarray)):
raise TypeError('Expected `v` to be a list or numpy array')
if isinstance(s, list):
return np.diag(s)
else:
from .vector import Vector
v = Vector(v)
Smat = np.zeros((v.nd + 1, v.nd + 1))
for i in range(v.nd):
Smat[i, i] = 1 + (s - 1) * v[i] ** 2 / v.norm ** 2
for i, j in combinations(list(range(v.nd)), 2):
Smat[i, j] = Smat[j, i] = \
(s - 1) * v[i] ** 2 * v[j] ** 2 / v.norm ** 2
Smat[np.where(np.abs(Smat) <= np.finfo(float).eps)] = 0.0
return Smat
[docs]def translation_matrix(v):
"""Generate :math:`4\\times4` translation matrix given 3D translation \
`Vector` `v`.
Parameters
----------
v : `Vector`
Translation vector.
Returns
-------
M : :class:`~numpy:numpy.matrix`
Translation matrix
"""
from . import Vector
v = Vector(v)
nd = v.nd
M = np.identity(nd + 1)
M[:nd, nd] = v[:nd]
return np.asmatrix(M)
[docs]def rotation_matrix_from_augmented_matrix(M):
"""Return the linear transformation component from an augmented matrix."""
return M[:-1, :-1]
[docs]def translation_from_augmented_matrix(M):
"""Return the translation vector from an affine matrix."""
from . import Vector
return Vector(np.asarray(M)[:-1, -1])
translation_from_matrix = translation_from_augmented_matrix
[docs]def axis_angle_from_rotation_matrix(rmatrix):
"""Compute the rotation axis and angle from a rotation matrix.
Parameters
----------
rmatrix : :class:`~numpy:numpy.ndarray`
Returns
-------
axis : :class:`~sknano.core.math.Vector`
angle : :class:`~numpy:numpy.float`
.. todo::
Fix code to compute the correct sense of the rotation or
direction of rotation axis vector.
"""
if not isinstance(rmatrix, np.ndarray):
raise TypeError('Expected matrix to be a 3x3 numpy array.')
from .vector import Vector
angle = np.arccos((np.trace(rmatrix) - 1) / 2)
# compute random vector
x = Vector(np.random.random(3)).unit_vector
axis = (np.dot(rmatrix, x) +
np.dot(rmatrix.T, x) +
(1 - np.trace(rmatrix)) * x).unit_vector
axis.rezero()
return axis, angle