Crystal3DLattice¶
-
class
sknano.core.crystallography.
Crystal3DLattice
(a=None, b=None, c=None, alpha=None, beta=None, gamma=None, a1=None, a2=None, a3=None, cell_matrix=None, orientation_matrix=None, offset=None)[source] [edit on github][source]¶ Bases:
sknano.core.crystallography.LatticeBase
,sknano.core.crystallography.ReciprocalLatticeMixin
3D crystal lattice class.
Parameters: - b, c (a,) –
- beta, gamma (alpha,) –
- a2, a3 (a1,) –
- cell_matrix (array_like) –
- orientation_matrix (array_like, optional) –
Attributes
a
Length of lattice vector \(\mathbf{a}\). a1
Lattice vector \(\mathbf{a}_1=\mathbf{a}\). a2
Lattice vector \(\mathbf{a}_2=\mathbf{b}\). a3
Lattice vector \(\mathbf{a}_3=\mathbf{c}\). alpha
Angle between lattice vectors \(\mathbf{b}\) and \(\mathbf{c}\) in degrees. angles
Tuple of lattice parameter angles \(\alpha, \beta, \gamma\). b
Length of lattice_vector \(\mathbf{b}\). b1
3D reciprocal lattice vector \(\mathbf{b}_1=\mathbf{a}^{*}\). b2
3D reciprocal lattice vector \(\mathbf{b}_2=\mathbf{b}^{*}\). b3
3D reciprocal lattice vector \(\mathbf{b}_3=\mathbf{c}^{*}\). beta
Angle between lattice vectors \(\mathbf{a}\) and \(\mathbf{c}\) in degrees. bounding_box
region
bounding_box
.c
Length of lattice vector \(\mathbf{c}\). cell
Alias for cell_matrix
.cell_matrix
Matrix of lattice row vectors. cell_volume
Alias for volume
.centroid
Region centroid. cos_alpha
\(\cos\alpha\) cos_alpha_star
\(\cos\alpha^*\) cos_beta
\(\cos\beta\) cos_beta_star
\(\cos\beta^*\) cos_gamma
\(\cos\gamma\) cos_gamma_star
\(\cos\gamma^*\) fmtstr
Format string. fractional_matrix
Transformation matrix to convert from cartesian coordinates to fractional coordinates. gamma
Angle between lattice vectors \(\mathbf{a}\) and \(\mathbf{b}\) in degrees. lattice_parameters
Tuple of lattice parameters a
,b
,c
,alpha
,beta
,gamma
.lattice_vectors
Tuple of lattice vectors \(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\). lengths
Tuple of lattice vector lengths \(a, b, c\). lengths_and_angles
Alias for attr: Crystal3DLattice.lattice_parameters
.matrix
Alias for cell_matrix
.metric_tensor
Metric tensor. offset
Lattice offset. ortho_matrix
Transformation matrix to convert from fractional coordinates to cartesian coordinates. reciprocal_lattice
Reciprocal lattice of this Crystal3DLattice
.region
Parallelepiped
defined by lattice vectors.sin_alpha
\(\sin\alpha\) sin_alpha_star
\(\sin\alpha^*\) sin_beta
\(\sin\beta\) sin_beta_star
\(\sin\beta^*\) sin_gamma
\(\sin\gamma\) sin_gamma_star
\(\sin\gamma^*\) volume
Crystal cell volume. Methods
cartesian_to_fractional
(ccoords)Convert cartesian coordinate to fractional coordinate. cubic
(a)Generate a cubic 3D lattice with lattice parameter \(a\). fractional_diff
(fcoords1, fcoords2)Compute difference between fractional coordinates. fractional_to_cartesian
(fcoords)Convert fractional coordinate to cartesian coordinate. hexagonal
(a, c)Generate a hexagonal 3D lattice with lattice parameters \(a, c\). monoclinic
(a, b, c, beta)Generate a monoclinic 3D lattice with lattice parameters \(a, b, c, \beta\). orthorhombic
(a, b, c)Generate an orthorhombic 3D lattice with lattice parameters \(a, b, c\). rotate
(**kwargs)Rotate unit cell. tetragonal
(a, c)Generate a tetragonal 3D lattice with lattice parameters \(a, c\). todict
()Return dict
ofCrystal3DLattice
parameters.translate
(t)Translate lattice. triclinic
(a, b, c, alpha, beta, gamma)Generate a triclinic 3D lattice with lattice parameters \(a, b, c, \alpha, \beta, \gamma\). wrap_cartesian_coordinate
(p[, epsilon, pbc])Wrap cartesian coordinate to lie within unit cell. wrap_cartesian_coordinates
(points[, ...])Wrap array of cartesian coordinates to lie within unit cell. wrap_fractional_coordinate
(p[, epsilon, pbc])Wrap fractional coordinate to lie within unit cell. wrap_fractional_coordinates
(points[, ...])Wrap array of fractional coordinates to lie within unit cell. Attributes Summary
a
Length of lattice vector \(\mathbf{a}\). a1
Lattice vector \(\mathbf{a}_1=\mathbf{a}\). a2
Lattice vector \(\mathbf{a}_2=\mathbf{b}\). a3
Lattice vector \(\mathbf{a}_3=\mathbf{c}\). alpha
Angle between lattice vectors \(\mathbf{b}\) and \(\mathbf{c}\) in degrees. angles
Tuple of lattice parameter angles \(\alpha, \beta, \gamma\). b
Length of lattice_vector \(\mathbf{b}\). beta
Angle between lattice vectors \(\mathbf{a}\) and \(\mathbf{c}\) in degrees. c
Length of lattice vector \(\mathbf{c}\). cell_volume
Alias for volume
.cos_alpha
\(\cos\alpha\) cos_beta
\(\cos\beta\) cos_gamma
\(\cos\gamma\) gamma
Angle between lattice vectors \(\mathbf{a}\) and \(\mathbf{b}\) in degrees. lattice_parameters
Tuple of lattice parameters a
,b
,c
,alpha
,beta
,gamma
.lattice_vectors
Tuple of lattice vectors \(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\). lengths
Tuple of lattice vector lengths \(a, b, c\). lengths_and_angles
Alias for attr: Crystal3DLattice.lattice_parameters
.ortho_matrix
Transformation matrix to convert from fractional coordinates to cartesian coordinates. reciprocal_lattice
Reciprocal lattice of this Crystal3DLattice
.sin_alpha
\(\sin\alpha\) sin_beta
\(\sin\beta\) sin_gamma
\(\sin\gamma\) volume
Crystal cell volume. Methods Summary
cubic
(a)Generate a cubic 3D lattice with lattice parameter \(a\). hexagonal
(a, c)Generate a hexagonal 3D lattice with lattice parameters \(a, c\). monoclinic
(a, b, c, beta)Generate a monoclinic 3D lattice with lattice parameters \(a, b, c, \beta\). orthorhombic
(a, b, c)Generate an orthorhombic 3D lattice with lattice parameters \(a, b, c\). tetragonal
(a, c)Generate a tetragonal 3D lattice with lattice parameters \(a, c\). todict
()Return dict
ofCrystal3DLattice
parameters.triclinic
(a, b, c, alpha, beta, gamma)Generate a triclinic 3D lattice with lattice parameters \(a, b, c, \alpha, \beta, \gamma\). Attributes Documentation
-
a
¶ Length of lattice vector \(\mathbf{a}\).
-
a1
¶ Lattice vector \(\mathbf{a}_1=\mathbf{a}\).
-
a2
¶ Lattice vector \(\mathbf{a}_2=\mathbf{b}\).
-
a3
¶ Lattice vector \(\mathbf{a}_3=\mathbf{c}\).
-
alpha
¶ Angle between lattice vectors \(\mathbf{b}\) and \(\mathbf{c}\) in degrees.
-
angles
¶ Tuple of lattice parameter angles \(\alpha, \beta, \gamma\).
-
b
¶ Length of lattice_vector \(\mathbf{b}\).
-
beta
¶ Angle between lattice vectors \(\mathbf{a}\) and \(\mathbf{c}\) in degrees.
-
c
¶ Length of lattice vector \(\mathbf{c}\).
-
cos_alpha
¶ \(\cos\alpha\)
-
cos_beta
¶ \(\cos\beta\)
-
cos_gamma
¶ \(\cos\gamma\)
-
gamma
¶ Angle between lattice vectors \(\mathbf{a}\) and \(\mathbf{b}\) in degrees.
-
lattice_vectors
¶ Tuple of lattice vectors \(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\).
-
lengths
¶ Tuple of lattice vector lengths \(a, b, c\).
-
lengths_and_angles
¶ Alias for attr:
Crystal3DLattice.lattice_parameters
.
-
ortho_matrix
¶ Transformation matrix to convert from fractional coordinates to cartesian coordinates.
-
reciprocal_lattice
¶ Reciprocal lattice of this
Crystal3DLattice
.
-
sin_alpha
¶ \(\sin\alpha\)
-
sin_beta
¶ \(\sin\beta\)
-
sin_gamma
¶ \(\sin\gamma\)
-
volume
¶ Crystal cell volume.
Methods Documentation
-
classmethod
cubic
(a)[source] [edit on github][source]¶ Generate a cubic 3D lattice with lattice parameter \(a\).
-
classmethod
hexagonal
(a, c)[source] [edit on github][source]¶ Generate a hexagonal 3D lattice with lattice parameters \(a, c\).
-
classmethod
monoclinic
(a, b, c, beta)[source] [edit on github][source]¶ Generate a monoclinic 3D lattice with lattice parameters \(a, b, c, \beta\).
-
classmethod
orthorhombic
(a, b, c)[source] [edit on github][source]¶ Generate an orthorhombic 3D lattice with lattice parameters \(a, b, c\).
-
classmethod
tetragonal
(a, c)[source] [edit on github][source]¶ Generate a tetragonal 3D lattice with lattice parameters \(a, c\).
-
todict
()[source] [edit on github][source]¶ Return
dict
ofCrystal3DLattice
parameters.
-
classmethod
triclinic
(a, b, c, alpha, beta, gamma)[source] [edit on github][source]¶ Generate a triclinic 3D lattice with lattice parameters \(a, b, c, \alpha, \beta, \gamma\).