Reciprocal3DLattice¶
-
class
sknano.core.crystallography.Reciprocal3DLattice(a_star=None, b_star=None, c_star=None, alpha_star=None, beta_star=None, gamma_star=None, b1=None, b2=None, b3=None, cell_matrix=None, orientation_matrix=None, offset=None)[source] [edit on github][source]¶ Bases:
sknano.core.crystallography.ReciprocalLatticeBase,sknano.core.crystallography.DirectLatticeMixin3D reciprocal lattice class.
Parameters: - b_star, c_star (a_star,) –
- beta_star, gamma_star (alpha_star,) –
- b2, b3 (b1,) –
- cell_matrix (array_like) –
- orientation_matrix (array_like) –
Attributes
a13D lattice vector \(\mathbf{a}_1=\mathbf{a}\). a23D lattice vector \(\mathbf{a}_2=\mathbf{b}\). a33D lattice vector \(\mathbf{a}_3=\mathbf{c}\). a_starLength of lattice vector \(\mathbf{a^*}\). alpha_starAngle between lattice vectors \(\mathbf{b}^{\ast}\) and \(\mathbf{c}^{\ast}\) in degrees. anglesTuple of lattice parameter angles \(\alpha^*, \beta^*, \gamma^*\). b1Lattice vector \(\mathbf{b}_1=\mathbf{a}^{\ast}\). b2Lattice vector \(\mathbf{b}_2=\mathbf{b}^{\ast}\). b3Lattice vector \(\mathbf{b}_3=\mathbf{c}^{\ast}\). b_starLength of lattice_vector \(\mathbf{b^*}\). beta_starAngle between lattice vectors \(\mathbf{c}^{\ast}\) and \(\mathbf{a}^{\ast}\) in degrees. bounding_boxregionbounding_box.c_starLength of lattice vector \(\mathbf{c^*}\). cellAlias for cell_matrix.cell_matrixMatrix of lattice row vectors. centroidRegion centroid. cos_alpha\(\cos\alpha\) cos_alpha_star\(\cos\alpha^{\ast}\) cos_beta\(\cos\beta\) cos_beta_star\(\cos\beta^{\ast}\) cos_gamma\(\cos\gamma\) cos_gamma_star\(\cos\gamma^{\ast}\) fmtstrFormat string. fractional_matrixTransformation matrix to convert from cartesian coordinates to fractional coordinates. gamma_starAngle between lattice vectors \(\mathbf{a}^{\ast}\) and \(\mathbf{b}^{\ast}\) in degrees. lattice_parametersTuple of lattice parameters a^*,b^*,c^*,alpha^*,beta^*,gamma^*.lattice_vectorsTuple of lattice vectors \(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\). lengthsTuple of lattice vector lengths \(a^*, b^*, c^*\). matrixAlias for cell_matrix.metric_tensorMetric tensor. offsetLattice offset. ortho_matrixTransformation matrix to convert from fractional coordinates to cartesian coordinates. reciprocal_latticeReciprocal lattice of this Reciprocal3DLattice.regionParallelepipeddefined by lattice vectors.sin_alpha\(\sin\alpha\) sin_alpha_star\(\sin\alpha^{\ast}\) sin_beta\(\sin\beta\) sin_beta_star\(\sin\beta^{\ast}\) sin_gamma\(\sin\gamma\) sin_gamma_star\(\sin\gamma^{\ast}\) Methods
cartesian_to_fractional(ccoords)Convert cartesian coordinate to fractional coordinate. cubic(a_star)Generate a cubic 3D lattice with lattice parameter \(a^*\). fractional_diff(fcoords1, fcoords2)Compute difference between fractional coordinates. fractional_to_cartesian(fcoords)Convert fractional coordinate to cartesian coordinate. hexagonal(a_star, c_star)Generate a hexagonal 3D lattice with lattice parameters \(a^*, c^*\). monoclinic(a_star, b_star, c_star, beta_star)Generate a monoclinic 3D lattice with lattice parameters \(a^*, b^*, c^*, \beta^*\). orthorhombic(a_star, b_star, c_star)Generate an orthorhombic 3D lattice with lattice parameters \(a^*, b^*, c^*\). rotate(**kwargs)Rotate unit cell. tetragonal(a_star, c_star)Generate a tetragonal 3D lattice with lattice parameters \(a^*, c^*\). todict()Return dictofReciprocal3DLatticeparameters.translate(t)Translate lattice. triclinic(a_star, b_star, c_star, ...)Generate a triclinic 3D lattice with lattice parameters \(a^*, b^*, c^*, \alpha^*, \beta^*, \gamma^*\). wrap_cartesian_coordinate(p[, epsilon, pbc])Wrap cartesian coordinate to lie within unit cell. wrap_cartesian_coordinates(points[, ...])Wrap array of cartesian coordinates to lie within unit cell. wrap_fractional_coordinate(p[, epsilon, pbc])Wrap fractional coordinate to lie within unit cell. wrap_fractional_coordinates(points[, ...])Wrap array of fractional coordinates to lie within unit cell. Attributes Summary
a_starLength of lattice vector \(\mathbf{a^*}\). alpha_starAngle between lattice vectors \(\mathbf{b}^{\ast}\) and \(\mathbf{c}^{\ast}\) in degrees. anglesTuple of lattice parameter angles \(\alpha^*, \beta^*, \gamma^*\). b1Lattice vector \(\mathbf{b}_1=\mathbf{a}^{\ast}\). b2Lattice vector \(\mathbf{b}_2=\mathbf{b}^{\ast}\). b3Lattice vector \(\mathbf{b}_3=\mathbf{c}^{\ast}\). b_starLength of lattice_vector \(\mathbf{b^*}\). beta_starAngle between lattice vectors \(\mathbf{c}^{\ast}\) and \(\mathbf{a}^{\ast}\) in degrees. c_starLength of lattice vector \(\mathbf{c^*}\). cos_alpha_star\(\cos\alpha^{\ast}\) cos_beta_star\(\cos\beta^{\ast}\) cos_gamma_star\(\cos\gamma^{\ast}\) gamma_starAngle between lattice vectors \(\mathbf{a}^{\ast}\) and \(\mathbf{b}^{\ast}\) in degrees. lattice_parametersTuple of lattice parameters a^*,b^*,c^*,alpha^*,beta^*,gamma^*.lattice_vectorsTuple of lattice vectors \(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\). lengthsTuple of lattice vector lengths \(a^*, b^*, c^*\). reciprocal_latticeReciprocal lattice of this Reciprocal3DLattice.sin_alpha_star\(\sin\alpha^{\ast}\) sin_beta_star\(\sin\beta^{\ast}\) sin_gamma_star\(\sin\gamma^{\ast}\) Methods Summary
cubic(a_star)Generate a cubic 3D lattice with lattice parameter \(a^*\). hexagonal(a_star, c_star)Generate a hexagonal 3D lattice with lattice parameters \(a^*, c^*\). monoclinic(a_star, b_star, c_star, beta_star)Generate a monoclinic 3D lattice with lattice parameters \(a^*, b^*, c^*, \beta^*\). orthorhombic(a_star, b_star, c_star)Generate an orthorhombic 3D lattice with lattice parameters \(a^*, b^*, c^*\). tetragonal(a_star, c_star)Generate a tetragonal 3D lattice with lattice parameters \(a^*, c^*\). todict()Return dictofReciprocal3DLatticeparameters.triclinic(a_star, b_star, c_star, ...)Generate a triclinic 3D lattice with lattice parameters \(a^*, b^*, c^*, \alpha^*, \beta^*, \gamma^*\). Attributes Documentation
-
a_star¶ Length of lattice vector \(\mathbf{a^*}\).
-
alpha_star¶ Angle between lattice vectors \(\mathbf{b}^{\ast}\) and \(\mathbf{c}^{\ast}\) in degrees.
-
angles¶ Tuple of lattice parameter angles \(\alpha^*, \beta^*, \gamma^*\).
-
b1¶ Lattice vector \(\mathbf{b}_1=\mathbf{a}^{\ast}\).
-
b2¶ Lattice vector \(\mathbf{b}_2=\mathbf{b}^{\ast}\).
-
b3¶ Lattice vector \(\mathbf{b}_3=\mathbf{c}^{\ast}\).
-
b_star¶ Length of lattice_vector \(\mathbf{b^*}\).
-
beta_star¶ Angle between lattice vectors \(\mathbf{c}^{\ast}\) and \(\mathbf{a}^{\ast}\) in degrees.
-
c_star¶ Length of lattice vector \(\mathbf{c^*}\).
-
cos_alpha_star¶ \(\cos\alpha^{\ast}\)
-
cos_beta_star¶ \(\cos\beta^{\ast}\)
-
cos_gamma_star¶ \(\cos\gamma^{\ast}\)
-
gamma_star¶ Angle between lattice vectors \(\mathbf{a}^{\ast}\) and \(\mathbf{b}^{\ast}\) in degrees.
-
lattice_parameters¶ Tuple of lattice parameters
a^*,b^*,c^*,alpha^*,beta^*,gamma^*.
-
lattice_vectors¶ Tuple of lattice vectors \(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\).
-
lengths¶ Tuple of lattice vector lengths \(a^*, b^*, c^*\).
-
reciprocal_lattice¶ Reciprocal lattice of this
Reciprocal3DLattice.
-
sin_alpha_star¶ \(\sin\alpha^{\ast}\)
-
sin_beta_star¶ \(\sin\beta^{\ast}\)
-
sin_gamma_star¶ \(\sin\gamma^{\ast}\)
Methods Documentation
-
classmethod
cubic(a_star)[source] [edit on github][source]¶ Generate a cubic 3D lattice with lattice parameter \(a^*\).
-
classmethod
hexagonal(a_star, c_star)[source] [edit on github][source]¶ Generate a hexagonal 3D lattice with lattice parameters \(a^*, c^*\).
-
classmethod
monoclinic(a_star, b_star, c_star, beta_star)[source] [edit on github][source]¶ Generate a monoclinic 3D lattice with lattice parameters \(a^*, b^*, c^*, \beta^*\).
-
classmethod
orthorhombic(a_star, b_star, c_star)[source] [edit on github][source]¶ Generate an orthorhombic 3D lattice with lattice parameters \(a^*, b^*, c^*\).
-
classmethod
tetragonal(a_star, c_star)[source] [edit on github][source]¶ Generate a tetragonal 3D lattice with lattice parameters \(a^*, c^*\).
-
todict()[source] [edit on github][source]¶ Return
dictofReciprocal3DLatticeparameters.
-
classmethod
triclinic(a_star, b_star, c_star, alpha_star, beta_star, gamma_star)[source] [edit on github][source]¶ Generate a triclinic 3D lattice with lattice parameters \(a^*, b^*, c^*, \alpha^*, \beta^*, \gamma^*\).