Reciprocal3DLattice¶
-
class
sknano.core.crystallography.
Reciprocal3DLattice
(a_star=None, b_star=None, c_star=None, alpha_star=None, beta_star=None, gamma_star=None, b1=None, b2=None, b3=None, cell_matrix=None, orientation_matrix=None, offset=None)[source] [edit on github][source]¶ Bases:
sknano.core.crystallography.ReciprocalLatticeBase
,sknano.core.crystallography.DirectLatticeMixin
3D reciprocal lattice class.
Parameters: - b_star, c_star (a_star,) –
- beta_star, gamma_star (alpha_star,) –
- b2, b3 (b1,) –
- cell_matrix (array_like) –
- orientation_matrix (array_like) –
Attributes
a1
3D lattice vector \(\mathbf{a}_1=\mathbf{a}\). a2
3D lattice vector \(\mathbf{a}_2=\mathbf{b}\). a3
3D lattice vector \(\mathbf{a}_3=\mathbf{c}\). a_star
Length of lattice vector \(\mathbf{a^*}\). alpha_star
Angle between lattice vectors \(\mathbf{b}^{\ast}\) and \(\mathbf{c}^{\ast}\) in degrees. angles
Tuple of lattice parameter angles \(\alpha^*, \beta^*, \gamma^*\). b1
Lattice vector \(\mathbf{b}_1=\mathbf{a}^{\ast}\). b2
Lattice vector \(\mathbf{b}_2=\mathbf{b}^{\ast}\). b3
Lattice vector \(\mathbf{b}_3=\mathbf{c}^{\ast}\). b_star
Length of lattice_vector \(\mathbf{b^*}\). beta_star
Angle between lattice vectors \(\mathbf{c}^{\ast}\) and \(\mathbf{a}^{\ast}\) in degrees. bounding_box
region
bounding_box
.c_star
Length of lattice vector \(\mathbf{c^*}\). cell
Alias for cell_matrix
.cell_matrix
Matrix of lattice row vectors. centroid
Region centroid. cos_alpha
\(\cos\alpha\) cos_alpha_star
\(\cos\alpha^{\ast}\) cos_beta
\(\cos\beta\) cos_beta_star
\(\cos\beta^{\ast}\) cos_gamma
\(\cos\gamma\) cos_gamma_star
\(\cos\gamma^{\ast}\) fmtstr
Format string. fractional_matrix
Transformation matrix to convert from cartesian coordinates to fractional coordinates. gamma_star
Angle between lattice vectors \(\mathbf{a}^{\ast}\) and \(\mathbf{b}^{\ast}\) in degrees. lattice_parameters
Tuple of lattice parameters a^*
,b^*
,c^*
,alpha^*
,beta^*
,gamma^*
.lattice_vectors
Tuple of lattice vectors \(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\). lengths
Tuple of lattice vector lengths \(a^*, b^*, c^*\). matrix
Alias for cell_matrix
.metric_tensor
Metric tensor. offset
Lattice offset. ortho_matrix
Transformation matrix to convert from fractional coordinates to cartesian coordinates. reciprocal_lattice
Reciprocal lattice of this Reciprocal3DLattice
.region
Parallelepiped
defined by lattice vectors.sin_alpha
\(\sin\alpha\) sin_alpha_star
\(\sin\alpha^{\ast}\) sin_beta
\(\sin\beta\) sin_beta_star
\(\sin\beta^{\ast}\) sin_gamma
\(\sin\gamma\) sin_gamma_star
\(\sin\gamma^{\ast}\) Methods
cartesian_to_fractional
(ccoords)Convert cartesian coordinate to fractional coordinate. cubic
(a_star)Generate a cubic 3D lattice with lattice parameter \(a^*\). fractional_diff
(fcoords1, fcoords2)Compute difference between fractional coordinates. fractional_to_cartesian
(fcoords)Convert fractional coordinate to cartesian coordinate. hexagonal
(a_star, c_star)Generate a hexagonal 3D lattice with lattice parameters \(a^*, c^*\). monoclinic
(a_star, b_star, c_star, beta_star)Generate a monoclinic 3D lattice with lattice parameters \(a^*, b^*, c^*, \beta^*\). orthorhombic
(a_star, b_star, c_star)Generate an orthorhombic 3D lattice with lattice parameters \(a^*, b^*, c^*\). rotate
(**kwargs)Rotate unit cell. tetragonal
(a_star, c_star)Generate a tetragonal 3D lattice with lattice parameters \(a^*, c^*\). todict
()Return dict
ofReciprocal3DLattice
parameters.translate
(t)Translate lattice. triclinic
(a_star, b_star, c_star, ...)Generate a triclinic 3D lattice with lattice parameters \(a^*, b^*, c^*, \alpha^*, \beta^*, \gamma^*\). wrap_cartesian_coordinate
(p[, epsilon, pbc])Wrap cartesian coordinate to lie within unit cell. wrap_cartesian_coordinates
(points[, ...])Wrap array of cartesian coordinates to lie within unit cell. wrap_fractional_coordinate
(p[, epsilon, pbc])Wrap fractional coordinate to lie within unit cell. wrap_fractional_coordinates
(points[, ...])Wrap array of fractional coordinates to lie within unit cell. Attributes Summary
a_star
Length of lattice vector \(\mathbf{a^*}\). alpha_star
Angle between lattice vectors \(\mathbf{b}^{\ast}\) and \(\mathbf{c}^{\ast}\) in degrees. angles
Tuple of lattice parameter angles \(\alpha^*, \beta^*, \gamma^*\). b1
Lattice vector \(\mathbf{b}_1=\mathbf{a}^{\ast}\). b2
Lattice vector \(\mathbf{b}_2=\mathbf{b}^{\ast}\). b3
Lattice vector \(\mathbf{b}_3=\mathbf{c}^{\ast}\). b_star
Length of lattice_vector \(\mathbf{b^*}\). beta_star
Angle between lattice vectors \(\mathbf{c}^{\ast}\) and \(\mathbf{a}^{\ast}\) in degrees. c_star
Length of lattice vector \(\mathbf{c^*}\). cos_alpha_star
\(\cos\alpha^{\ast}\) cos_beta_star
\(\cos\beta^{\ast}\) cos_gamma_star
\(\cos\gamma^{\ast}\) gamma_star
Angle between lattice vectors \(\mathbf{a}^{\ast}\) and \(\mathbf{b}^{\ast}\) in degrees. lattice_parameters
Tuple of lattice parameters a^*
,b^*
,c^*
,alpha^*
,beta^*
,gamma^*
.lattice_vectors
Tuple of lattice vectors \(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\). lengths
Tuple of lattice vector lengths \(a^*, b^*, c^*\). reciprocal_lattice
Reciprocal lattice of this Reciprocal3DLattice
.sin_alpha_star
\(\sin\alpha^{\ast}\) sin_beta_star
\(\sin\beta^{\ast}\) sin_gamma_star
\(\sin\gamma^{\ast}\) Methods Summary
cubic
(a_star)Generate a cubic 3D lattice with lattice parameter \(a^*\). hexagonal
(a_star, c_star)Generate a hexagonal 3D lattice with lattice parameters \(a^*, c^*\). monoclinic
(a_star, b_star, c_star, beta_star)Generate a monoclinic 3D lattice with lattice parameters \(a^*, b^*, c^*, \beta^*\). orthorhombic
(a_star, b_star, c_star)Generate an orthorhombic 3D lattice with lattice parameters \(a^*, b^*, c^*\). tetragonal
(a_star, c_star)Generate a tetragonal 3D lattice with lattice parameters \(a^*, c^*\). todict
()Return dict
ofReciprocal3DLattice
parameters.triclinic
(a_star, b_star, c_star, ...)Generate a triclinic 3D lattice with lattice parameters \(a^*, b^*, c^*, \alpha^*, \beta^*, \gamma^*\). Attributes Documentation
-
a_star
¶ Length of lattice vector \(\mathbf{a^*}\).
-
alpha_star
¶ Angle between lattice vectors \(\mathbf{b}^{\ast}\) and \(\mathbf{c}^{\ast}\) in degrees.
-
angles
¶ Tuple of lattice parameter angles \(\alpha^*, \beta^*, \gamma^*\).
-
b1
¶ Lattice vector \(\mathbf{b}_1=\mathbf{a}^{\ast}\).
-
b2
¶ Lattice vector \(\mathbf{b}_2=\mathbf{b}^{\ast}\).
-
b3
¶ Lattice vector \(\mathbf{b}_3=\mathbf{c}^{\ast}\).
-
b_star
¶ Length of lattice_vector \(\mathbf{b^*}\).
-
beta_star
¶ Angle between lattice vectors \(\mathbf{c}^{\ast}\) and \(\mathbf{a}^{\ast}\) in degrees.
-
c_star
¶ Length of lattice vector \(\mathbf{c^*}\).
-
cos_alpha_star
¶ \(\cos\alpha^{\ast}\)
-
cos_beta_star
¶ \(\cos\beta^{\ast}\)
-
cos_gamma_star
¶ \(\cos\gamma^{\ast}\)
-
gamma_star
¶ Angle between lattice vectors \(\mathbf{a}^{\ast}\) and \(\mathbf{b}^{\ast}\) in degrees.
-
lattice_parameters
¶ Tuple of lattice parameters
a^*
,b^*
,c^*
,alpha^*
,beta^*
,gamma^*
.
-
lattice_vectors
¶ Tuple of lattice vectors \(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\).
-
lengths
¶ Tuple of lattice vector lengths \(a^*, b^*, c^*\).
-
reciprocal_lattice
¶ Reciprocal lattice of this
Reciprocal3DLattice
.
-
sin_alpha_star
¶ \(\sin\alpha^{\ast}\)
-
sin_beta_star
¶ \(\sin\beta^{\ast}\)
-
sin_gamma_star
¶ \(\sin\gamma^{\ast}\)
Methods Documentation
-
classmethod
cubic
(a_star)[source] [edit on github][source]¶ Generate a cubic 3D lattice with lattice parameter \(a^*\).
-
classmethod
hexagonal
(a_star, c_star)[source] [edit on github][source]¶ Generate a hexagonal 3D lattice with lattice parameters \(a^*, c^*\).
-
classmethod
monoclinic
(a_star, b_star, c_star, beta_star)[source] [edit on github][source]¶ Generate a monoclinic 3D lattice with lattice parameters \(a^*, b^*, c^*, \beta^*\).
-
classmethod
orthorhombic
(a_star, b_star, c_star)[source] [edit on github][source]¶ Generate an orthorhombic 3D lattice with lattice parameters \(a^*, b^*, c^*\).
-
classmethod
tetragonal
(a_star, c_star)[source] [edit on github][source]¶ Generate a tetragonal 3D lattice with lattice parameters \(a^*, c^*\).
-
todict
()[source] [edit on github][source]¶ Return
dict
ofReciprocal3DLattice
parameters.
-
classmethod
triclinic
(a_star, b_star, c_star, alpha_star, beta_star, gamma_star)[source] [edit on github][source]¶ Generate a triclinic 3D lattice with lattice parameters \(a^*, b^*, c^*, \alpha^*, \beta^*, \gamma^*\).