sknano.core.geometric_regions.Cone¶
-
class
sknano.core.geometric_regions.Cone(p1=None, p2=None, r=1)[source][source]¶ Geometric3DRegionfor a cone.New in version 0.3.10.
Represents a cone with a base of radius \(r\) centered at \(p_1=(x_1,y_1,z_1)\) and a tip at \(p_2=(x_2, y_2, z_2)\).
Parameters: p1, p2 : array_like, optional
r : float, optional
Radius \(r\) of
ConebaseNotes
Conerepresents a bounded cone region \(\left\{p_1+\rho(1-z)\cos(\theta)\mathbf{v}_1 + \rho(1-z)\sin(\theta)\mathbf{v}_2+\mathbf{v}_3 z| 0\le\theta\le 2\pi\land 0\le\rho\le 1\land 0\le z\le 1\right\}\) where \(\mathbf{v}_3=p_2-p_1\) and vectors \((\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3)\) are orthogonal with \(|\mathbf{v}_1|=|\mathbf{v}_2|=1\) and \(p_1=(x_1,y_1,z_1)\) and \(p_2=(x_2, y_2, z_2)\).Calling
Conewith no parameters is equivalent toCone(p1=[0, 0, 0], p2=[0, 0, 2], r=1).Attributes
axisConeaxisVectorfrom \(\boldsymbol{\ell}=p_2 - p_1\)centerAlias for centroid.centroidConecentroid, \((c_x, c_y, c_z)\).fmtstrFormat string. measureAlias for volume, which is the measure of a 3D geometric region.p1Center point \((x_1, y_1, z_1)\) of Conebase.p2Point \((x_2, y_2, z_2)\) of Conetip.rRadius \(r\) of Conebase.volumeConevolume, \(V=\frac{1}{3}\pi r^2 \ell\).Methods
center_centroid()Center centroidon origin.contains(point)Test region membership of point in Cone.rotate([angle, axis, anchor_point, ...])Rotate GeometricRegionpointsandvectors.todict()Returns a dictof theConeconstructor parameters.translate(t[, fix_anchor_points])Translate GeometricRegionpointsandvectorsbyVectort.