sknano.core.geometric_regions.Cuboid

class sknano.core.geometric_regions.Cuboid(pmin=None, pmax=None, xmin=0, ymin=0, zmin=0, xmax=1, ymax=1, zmax=1)[source][source]

Geometric3DRegion for a cuboid.

New in version 0.3.0.

Represents an axis-aligned cuboid with lower corner \(p_{\mathrm{min}}= (x_{\mathrm{min}},y_{\mathrm{min}},z_{\mathrm{min}})\) and upper corner \(p_{\mathrm{max}}= (x_{\mathrm{max}},y_{\mathrm{max}},z_{\mathrm{max}})\).

Parameters:

pmin, pmax : array_like, optional

The minimum and maximum 3D point coordinates of the axis-aligned cuboid from pmin=[xmin, ymin, zmin] to pmax=[xmax, ymax, zmax].

xmin, ymin, zmin : float, optional

The minimum \((x, y, z)\) coordinates of the axis-aligned cuboid.

xmax, ymax, zmax : float, optional

The maximum \((x, y, z)\) coordinates of the axis-aligned cuboid.

Notes

Cuboid represents the region \(\left\{\{x, y, z\}| x_{\mathrm{min}}\le x\le x_{\mathrm{max}}\land y_{\mathrm{min}}\le y\le y_{\mathrm{max}}\land z_{\mathrm{min}}\le z\le z_{\mathrm{max}}\right\}\)

Calling Cuboid with no parameters is equivalent to Cuboid(pmin=[0, 0, 0], pmax=[1, 1, 1]).

Attributes

a Distance between \(x_{\mathrm{max}}-x_{\mathrm{min}}\).
b Distance between \(y_{\mathrm{max}}-y_{\mathrm{min}}\).
c Distance between \(z_{\mathrm{max}}-z_{\mathrm{min}}\).
center Alias for centroid.
centroid Cuboid centroid, \((c_x, c_y, c_z)\).
fmtstr Format string.
measure Alias for volume, which is the measure of a 3D geometric region.
pmax 3D Point at (xmax, ymax, zmax)
pmin 3D Point at (xmin, ymin, zmin)
volume Cuboid volume, \(V=abc\).
xmax \(x_{\mathrm{max}}\) coordinate.
xmin \(x_{\mathrm{min}}\) coordinate.
ymax \(y_{\mathrm{max}}\) coordinate.
ymin \(y_{\mathrm{min}}\) coordinate.
zmax \(z_{\mathrm{max}}\) coordinate.
zmin \(z_{\mathrm{min}}\) coordinate.

Methods

center_centroid() Center centroid on origin.
contains(point) Test region membership of point in Cuboid.
rotate(**kwargs)
todict() Returns a dict of the Cuboid constructor parameters.
translate(t[, fix_anchor_points]) Translate GeometricRegion points and vectors by Vector t.