sknano.generators.UnrolledSWNTGenerator¶
-
class
sknano.generators.UnrolledSWNTGenerator(*args, *, autogen=True, **kwargs)[source][source]¶ Class for generating unrolled nanotube structures.
New in version 0.2.23.
Parameters: n, m : int
Chiral indices defining the nanotube chiral vector \(\mathbf{C}_{h} = n\mathbf{a}_{1} + m\mathbf{a}_{2} = (n, m)\).
nx, ny, nz : int, optional
Number of repeat unit cells in the \(x, y, z\) dimensions
basis : {
list}, optionalList of
strs of element symbols or atomic number of the two atom basis (default: [‘C’, ‘C’])New in version 0.3.10.
element1, element2 : {str, int}, optional
Element symbol or atomic number of basis
Atom1 and 2Deprecated since version 0.3.10: Use
basisinsteadbond : float, optional
\(\mathrm{a}_{\mathrm{CC}} =\) distance between nearest neighbor atoms. Must be in units of Angstroms.
Lx, Ly, Lz : float, optional
Length of bundle in \(x, y, z\) dimensions in nanometers. Overrides the \(n_x, n_y, n_z\) cell values.
fix_Lz : bool, optional
Generate the nanotube with length as close to the specified \(L_z\) as possible. If True, then non integer \(n_z\) cells are permitted.
autogen : bool, optional
if True, automatically call
generate.verbose : bool, optional
if True, show verbose output
Notes
The
UnrolledSWNTGeneratorclass generates graphene using the nanotube unit cell defined by the chiral vector \(\mathbf{C}_{h} = n\mathbf{a}_{1} + m\mathbf{a}_{2} = (n, m)\). If you want to generate graphene with an armchair or zigzag edge using length and width parameters, see theGrapheneGeneratorclass.See also
Examples
First, load the
UnrolledSWNTGeneratorclass.>>> from sknano.generators import UnrolledSWNTGenerator
Now let’s generate an unrolled \(\mathbf{C}_{\mathrm{h}} = (10, 5)\) SWCNT unit cell.
>>> flatswcnt = UnrolledSWNTGenerator(10, 5) >>> flatswcnt.save()
The rendered structure looks like:
Attributes
ChSWNT circumference \(|\mathbf{C}_h|\) in Å Ch_vecSWNT chiral vector. LxLyLzSWNT length \(L_z = L_{\mathrm{tube}}\) in nanometers. M\(M = np - nq\) NNumber of graphene hexagons in nanotube unit cell. NatomsNumber of atoms in nanotube. Natoms_per_tubeNumber of atoms in nanotube \(N_{\mathrm{atoms/tube}}\). Natoms_per_unit_cellNumber of atoms in nanotube unit cell. NtubesNumber of nanotubes. RSymmetry vector \(\mathbf{R} = (p, q)\). TLength of nanotube unit cell \(|\mathbf{T}|\) in Å. TvecSWNT translation vector. atomsStructure StructureAtoms.basisNanoStructureBasebasis atoms.chiral_angleChiral angle \(\theta_c\) in degrees. chiral_typeSWNT chiral type. crystal_cellStructure CrystalCell.d\(d=\gcd{(n, m)}\) dR\(d_R=\gcd{(2n + m, 2m + n)}\) dtNanotube diameter \(d_t = \frac{|\mathbf{C}_h|}{\pi}\) in Å. electronic_typeSWNT electronic type. element1Basis element 1 element2Basis element 2 fix_Lxfix_LzfmtstrFormat string. latticeStructure Crystal3DLattice.linear_mass_densityLinear mass density of nanotube in g/nm. mChiral index \(m\). nChiral index \(n\). nlayersNumber of layers. nxNumber of unit cells along the \(x\)-axis. nzNumber of nanotube unit cells along the \(z\)-axis. rtNanotube radius \(r_t = \frac{|\mathbf{C}_h|}{2\pi}\) in Å. scaling_matrixCrystalCell.scaling_matrix.structurePointer to self. structure_dataAlias for BaseStructureMixin.structure.t1\(t_{1} = \frac{2m + n}{d_{R}}\) t2\(t_2 = -\frac{2n + m}{d_R}\) tube_lengthAlias for SWNT.Lztube_massSWNT mass in grams. unit_cellStructure UnitCell.unit_cell_massUnit cell mass in atomic mass units. unit_cell_symmetry_paramsTuple of SWNT unit cell symmetry parameters. vdw_distancevan der Waals distance. vdw_radiusvan der Waals radius Methods
clear()Clear list of BaseStructureMixin.atoms.generate()Generate structure data. generate_fname([n, m, nx, nz, fix_Lx, fix_Lz])generate_unit_cell()Generate the nanotube unit cell. make_supercell(scaling_matrix[, wrap_coords])Make supercell. read_data(*args, **kwargs)read_dump(*args, **kwargs)read_xyz(*args, **kwargs)rotate(**kwargs)Rotate crystal cell lattice, basis, and unit cell. save([fname, outpath, structure_format, ...])Save structure data. todict()Return dictof SWNT attributes.transform_lattice(scaling_matrix[, ...])translate(t[, fix_anchor_points])Translate crystal cell basis. write_data(**kwargs)write_dump(**kwargs)write_xyz(**kwargs)